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Abstract

Telecommunication companies are evolving in a highly competitive mar-
ket where attracting new customers is more expensive than retaining existing
ones. Retention campaigns can be used to prevent customer churn, but this
requires efficient churn prediction models. Such prediction is a difficult prob-
lem, involving large amount of data, non-linearity, imbalance and overlap
between churners and non-churners. In this master thesis, we approach this
problem with Orange Belgium customer data. A descriptive analysis of the
dataset is conducted, and predictive modeling of churn is achieved with a
random forest classifier. The large class imbalance between the two classes
is handled with the Easy Ensemble algorithm. We assess the impact of dif-
ferent data preprocessing techniques such as feature selection and creation of
new features. The directionality of the impact of variables on churn is esti-
mated through a sensitivity analysis. We observe that feature selection can
be used to reduce computation time and memory requirements, but the new
variables we engineered do not improve performance. Important variables in-
clude, non-exhaustively: the tenure, the tariff plan, the number of calls, and
the data usage. We explore the application of data-driven causal inference,
which allows to infer causal relationships between variables purely from ob-
servational data. More specifically, a causal Bayesian network, two methods
of Markov blanket inference, two causal filters and a supervised method are
applied. Supported by the prior knowledge of experts at Orange Belgium, we
conclude that the bill shock and the wrong tariff plan positioning are likely
hypotheses of churn.
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Résumé

Les compagnies de télécommunication évoluent dans un marché haute-
ment compétitif où attirer de nouveaux clients est plus coûteux que de re-
tenir les clients déjà présents. Des campagnes de rétention peuvent être uti-
lisées pour réduire la résiliation des clients, mais cela nécessite des modèles
de prédiction efficaces. La prédiction de résiliation est un problème difficile,
impliquant de grands quantités de données, des relations non-linéaires, des
classes non-équilibrées et avec une large superposition inter-classe. Dans ce
mémoire de master, nous abordons le problème de prédiction de résiliation
avec des données client de Orange Belgium. Une analyse descriptive du jeu
de données est effectuée, et une modélisation prédictive de la résiliation est
obtenue en utilisant un classificateur random forest. Le non-équilibrage entre
les classes est pris en compte avec l’algorithme Easy Ensemble. Nous éva-
luons l’impact de différentes techniques de prétraitement de données, telles
que la sélection de variables et la création de nouvelles variables. La direction
de l’impact des variables sur la résiliation est déduite avec une analyse de
sensibilité. On constate que la sélection de variables permet de réduire les be-
soins en temps de calcul et en mémoire, mais les nouvelles variables que nous
avons conçues n’améliorent pas les performances. Les variables importantes
sont, non-exhaustivement : la date d’inscription, le plan tarifaire, le nombre
moyen d’appels, et la consommation de données. Nous explorons l’utilisation
de l’inférence causale, qui permet de comprendre les liens de causalité entre
différentes variables à partir de données d’observation. Plus spécifiquement,
nous utilisons un réseau bayésien causal, une méthode d’inférence de couver-
ture de Markov, deux filtres causaux et une méthode supervisée. En prenant
en compte les connaissances préalables d’experts chez Orange Belgium, nous
concluons qu’une « mauvaise surprise » à la réception de la facture et un
mauvais positionnement de plan tarifaire sont deux causes probables de rési-
liation.
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Chapter 1

Introduction

1.1 Churn in the telecommunication industry

In recent years, the number of mobile phone users increased substantially, reaching
more than 3 billion users worldwide. The number of mobile phone service subscrip-
tions is above the number of residents in several countries, including Belgium (ITU,
2018). Telecommunication companies are evolving in a saturated market, where
customers are exposed to competitive offers from many other companies. Hadden,
Tiwari, Roy, and Ruta (2007) show that attracting new customers can be up to six
times more expensive than retaining existing ones. This led companies to switch
from a selling-oriented to a customer-oriented marketing approach. By building cus-
tomer relationship based on trustworthiness and commitment, a telecommunication
company can reduce the incentives for their client to churn, therefore increasing
benefits through the subsequent customer lifetime value.

One of the various marketing processes used to improve customer relationship
is to conduct retention campaigns. This traditionally consists in selecting clients
according to some simple statistical criteria and offering them a promotion or ad-
vantage. Typical promotions include a reduced invoice, free calls, SMS or data
volume. However, due to the limited nature of this statistical analysis, it is plau-
sible that the customers thus reached might never have planned to churn in the
first place. While this is of course not a problem for the customer, it would be far
more beneficial for the telecommunication company to be able to focus the reten-
tion campaigns only on risky customers, in the hope of preventing attrition that
would otherwise occur if no action is taken. The problem of detecting churn can
be addressed with data mining, by collecting data about customers and using this
information to infer typical patterns exhibited by risky clients. This data-driven
approach is nowadays taken by most major telecommunication companies, and a
part of the data mining literature is devoted to churn detection. We will describe
this approach further in the next section.
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Figure 1.1 – The churn prevention process implemented at Orange.

1.2 Churn detection and prevention
The churn prevention process (depicted in figure 1.1) starts by collecting data about
the customers and creating a historical database. This data summarizes the calls,
messages, internet usage and other actions performed by the customers1. It also
includes information about the subscription, such as the type of tariff plan, its
price, the subscription date, and so on. Finally, personal data provided by the
customer may as well be used, such as the age or the place of residence. Data
mining is then used on this database to provide a quantitative understanding of the
customers and their overall behavior. In particular, the difference between churners
and non-churners behavior can be visualized. This is useful to decide which type
of machine learning procedure should be used for churn prediction, but can also
bring valuable knowledge to marketing and customer relationship teams. Once the
data is sufficiently understood, a set of relevant machine learning models are built.
These models learn from the historical data the patterns typically exhibited by
clients that will churn in the near future. The types of patterns being learned, the
techniques used to find them, and the underlying assumptions are dependent on the
model under consideration. For example, a naive Bayes classifier assumes that each
variable is independent of the others if we know whether the customer is a churner
or not. In order to decide which model should be selected, the performances of each
model are evaluated by testing them on data left out of the training phase, and
different models are compared. Feature selection is also performed, and consists
in evaluating the importance of each variable for predicting churn and training the
model by using only the most important ones. This reduces the computation time
and generally improves the performances of the model since this reduces the noise

1This data is limited to the metadata of the phone call, message, or internet usage. The content
of the communication is never used. Moreover, the location information in the metadata is also
excluded.
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unimportant variables bring along. Once an efficient model has been selected, the
latest customer data is submitted to the model which outputs a probability of churn
for each customer. By ordering the customers by churn probability, a list of the
riskiest customers is established and sent to the campaigning team. They split this
set of clients into a target group and a control group. Each customer of the target
group is offered an incentive either by phone call, email or message, while the control
group is left untouched. This allows, a few months later, to evaluate the impact of
the retention campaign by assessing the difference of churn rate in retrospective in
the two groups. Also, the accuracy of the prediction model can be evaluated by
comparing the control group and the rest of the customer base

1.3 Causal inference

Depending on the resources available and the techniques used, this data mining
pipeline can successfully predict potential churners, therefore allowing to conduct
targeted retention campaigns. But campaigners are then faced with another chal-
lenge: what should they propose to the selected customers? Indeed, the predictions
given by data mining algorithms usually just consist in a probability of churn. This
prediction therefore does not indicate why the customer is about to stop the subscrip-
tion. We need different analysis tools to tackle this problem. This is the purpose
of causal inference, which is a formal approach to find the causes of some event
in a system. Causal inference is usually conducted through controlled randomized
experiments (Fisher, 1937). In the context of customer relationship management,
controlled experiments are possible through retention campaigns, where the offers
made to the customers act as variable manipulations. For example, offering a dis-
count would act on the variable “invoice amount”. Such an experiment is out of
the scope of this master thesis since it requires time, planning, and a collaboration
with the direct marketing department. We thus focus on data-driven approaches,
which are based on some properties of the statistical distribution of causally linked
variable.

To give an example of how causal inference can be conducted without experiment,
consider the simplistic world where two types of phone are available, an expensive
one and a cheap one. The expensive phone type makes customers consume more data
per month than the cheap one because more data-hungry applications are available
on it. Also, it increases the probability of churn because these phones are targeted
more often by concurrent advertisement. We represent such causal scenario with
a directed acyclic graph as in figure 1.2. We assume that once we know the phone
type of a customer, its data usage and its propensity to churn are independent, since
these are two different consequences of the customer’s choice of phone. We plotted
the data usage against the probability of churn for each type of phone in figure 1.3.
A positive correlation can be observed between data usage and churn but disappears
when considering each phone type separately. If a causal relationship also existed
between data usage and churn probability, the statistical dependency would still be
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Phone type

Data usage Churn

Figure 1.2 – Toy example of a causal diagram.
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Figure 1.3 – Toy example of data usage against the probability of churn for different
phone types.

visible, even when conditioning on the phone type. This idea of conditioning to
discard putative causal links is at the basis of most causal inference algorithms.

Such inference methods are based on a number of modeling assumptions, such
as the ability to represent the underlying causal mechanism by a graph as in figure
1.2, or the absence of confounding factor. This latter assumption would be violated
if, in our previous example, the age of the customer influences both its choice of
phone type and its propensity to churn. The causal inference algorithm would still
conclude that the expensive phones cause clients to churn, while in reality, they
churn solely because of their young age. This sort of erroneous conclusions can lead
to ineffective action in retention campaigns. Other inference methods imply other
assumptions, and care must be exercised when using them.

1.4 Context and motivation
This master thesis is conducted in collaboration with Orange Belgium, and orig-
inated from the long-lasting scientific collaboration between Prof. Gianluca Bon-
tempi (ULB Machine Learning Group) and Dr. Olivier Caelen (Orange Belgium).
This collaboration enables us to work on real-world data, in Orange premises, and
with people directly involved in the subject (data science and business intelligence
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teams at Orange). The churn prediction problem is challenging in many regards:
the dataset is large (in our case, 1.5 million entries per month, over 5 months),
highly imbalanced (there are very few churners in the whole customer base), and
highly overlapping (many non-churners exhibit the same behavior as churners). It
is therefore an interesting subject for a master thesis in machine learning, since it
requires the use of different state-of-the-art tools for overcoming these challenges.

The churn prediction task shares many similarities with the fraud detection prob-
lem, for example regarding the class imbalance and overlap, and the large amount
of data. The Machine Learning Group (MLG) has a fruitful collaboration with
Wordline in fraud detection since 2012 when Prof. Bontempi wrote and supervised
the Doctiris project “Adaptive real-time machine learning for credit card fraud de-
tection” (PhD student: Andrea Dal Pozzolo). The research activity in this domain
continued thanks to “Brufence: Scalable machine learning for automating defense
system” project and the recent TEAM-UP project DefeatFRAUD. This thorough
experience in the subject is a motivation and a valuable asset to pursue research in
churn prediction.

The interest for causal inference comes from the experience of the MLG in the
subject. They mainly applied causal inference onto bioinformatics application, such
as gene selection (Bontempi, Haibe-Kains, Desmedt, Sotiriou, & Quackenbush, 2011)
or microarray data (Bontempi & Meyer, 2010). More recently, a competition on
causal analysis was organized on the Kaggle website (https://www.kaggle.com/c/
cause-effect-pairs), with the goal of fostering causal discovery between two variables.
This led to the development of new methods, notably using machine learning (Bon-
tempi & Flauder, 2015). Moreover, the use of causal inference is seldom explored
in the literature on churn prevention. It is thus stimulating to conduct research at
the intersection of these two domains, benefiting from the technical expertise of the
MLG and the business knowledge of Orange.

1.5 Contributions
The main contributions of this thesis are

• Understanding of the churn prediction problem with a real-world dataset from
a telecom company (section 3.1).

• Evaluation of the predictive power of a state-of-the-art churn prediction model,
and the impact of several variations of the model by using different features
and different type of subscription contracts (section 3.3).

• Assessment of the directionality of the impact of a variable on prediction, by
shifting the value of the variable in the test set and measuring the difference
in average predicted score (section 3.3).

• Study of causal analysis, and its application to churn prediction from obser-
vational data (section 4.4).

https://www.kaggle.com/c/cause-effect-pairs
https://www.kaggle.com/c/cause-effect-pairs
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1.6 Outline
This master thesis is partitioned into 5 chapters, presented here.

1. (Chapter 1) An introduction to the problem of churn in the telecommunication
industry, the current methods in use to tackle it, and the contributions of this
master thesis.

2. (Chapter 2) Exposition of the state of the art in churn prediction and causal
analysis.

• Churn prediction: choice of predictive model, data preprocessing, class
balancing and evaluation measure.

• Causal analysis: Bayesian network learning, Markov blanket inference,
information-theoretic filters, bivariate and supervised methods.

3. (Chapter 3) Assessment of a churn prediction model on Orange customer data.
This chapter is further divided into:

• Presentation of the dataset

• Description of the data preparation

• Description of the experimental setting

• Presentation of the results

• Comparison to other state-of-the-art methods

• Conclusion and main outcomes of the experiments

4. (Chapter 4) Exploration of causal inference methods for churn prevention:

• Theoretical background for causal inference

• Scope of application

• Prior knowledge of the possible causes of churn

• Description of the experimental setting

• Presentation of the results

• Discussion and conclusion

5. (Chapter 5) A conclusion, divided into the following topics:

• Summary of our results

• Discussion of potential threats to the validity of our results

• Explanation of the added value of this thesis for Orange Belgium

• Presentation of planned future work

• Final conclusion
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1.7 Notation
The mathematical notation used throughout this document is presented in table 1.1.
Bold font denotes vectors or sets, and uppercase letters denote random variables.
An uppercase bold font thus denotes a set or vector of random variables.

n Number of features
X ⊆ Rn Feature space
X = [X1, . . . , Xn] Vector of random variables in X
x = [x1, . . . , xn] Feature vector, realization of X
Y = {0, 1} Target label space
y ∈ Y Example label
P (e) Probability of an event e
S Random variable of predicted score as a function of X
s Predicted score for a given x, realization of S
t ∈ [0, 1] decision threshold
fy(s) Probability density function of S for instances labeled y
Fy(s) Cumulative distribution function of S for instances labeled y
X ⊥ Y Random variables X and Y are independent
X \ Y Set difference between Y and Y

Table 1.1 – Summary of the mathematical notation.





Chapter 2

State of the art

2.1 Churn prediction
We organize our presentation of the state of the art in churn prediction by consid-
ering 4 aspects of interest in a usual churn prediction process: learning algorithm,
data preprocessing, class balancing and choice of an evaluation measure.

Learning algorithm
A large number of machine learning models have been applied to churn prediction
in the literature. While some studies focus on simple and interpretable models such
as decision tree (Keramati et al., 2014) or logistic regression (Olle & Cai, 2014),
other studies prefer the use of more complex models, at the expense of direct inter-
pretation. These methods include boosting applied on simple classifiers (Vafeiadis,
Diamantaras, Sarigiannidis, & Chatzisavvas, 2015), random forests, support vector
machine, neural networks, among others (Umayaparvathi & Iyakutti, 2016; Verbeke,
Dejaeger, Martens, Hur, & Baesens, 2012). An extensive overview of the current
trends in churn prediction modeling is given in (Kayaalp, 2017). We describe in this
section the learning algorithms used most often according to this review, based on
the material present in (Bontempi, 2017).

A decision tree is a non-linear model that partitions the input space into mutually
exclusive regions, and each of these regions is assigned a mapping between the input
vector and the output value. In the case of a classification tree, each region is
assigned a label. The partition of the input space is determined by a tree structure
composed of internal nodes and terminal nodes. Each internal node is associated
with a rule that determines which child node should be visited next, based on the
value of one of the variables. Each of the terminal nodes is associated with a mapping
function, a label in the case of a classification tree. The main methods of decision
tree inductions are ID3 (Quinlan, 1986), C4 (Quinlan, 1987), and CART (Breiman,
Friedman, Olshen, & Stone, 1984).

Logistic regression is a statistical binary classification model that assigns a
probability to each point of the input space. The probability of an input vector
x = [x1, . . . , xn] is calculated as the application of the sigmoid function on a linear

9
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combination of the values in x. More precisely, to each variable Xi is assigned a co-
efficient wi, and an intercept coefficient w0 is also defined. The predicted probability
of a logistic regression model is thus

s(x) =
1

1 + exp (−(w0 + w1x1 + · · ·+ wnxn))
.

The weights w0, . . . , wn can be learned by maximizing their log-likelihood given
a set of learning examples using the gradient descent algorithm.

Artificial neural networks are computational models that process input in a dis-
tributed, parallel fashion. They are initially inspired by biological neurons, but their
current development has moved towards a more rigorous interpretation based on the-
oretical machine learning. A wide variety of neural network architectures exists, but
we present here only feed-forward neural networks (FNN) for their prominent use in
the churn prediction literature. A MLP consists of a series of layers, and each layer
comprises multiple neurons. In the fully connected configuration, a neuron takes as
input all outputs from the previous layer. The output of the neuron is the result
of applying a non-linear activation function to the dot product of the inputs with a
vector of weights. Many activation functions exist, such as the sigmoid function, the
rectified linear unit (Nair & Hinton, 2010), the hyperbolic tangent, and many others
(Cheng & Titterington, 1994). The weights of each inter-neuron link are learned
by gradient descent on a loss function given training samples. The exact learning
setup can vary widely, thanks to the numerous possibilities in the choice of the loss
function and the gradient descent implementation.

A support vector machine (SVM) is a geometrical classification model based on
the notion of maximum margin hyperplane. A SVM model splits the input space
into two separate regions by using a hyperplane. This hyperplane is chosen as to
maximize its distance to the nearest data point in either class. In order to handle
arbitrary input space or non-separable classes, a kernel function is used to project the
input space into a well-known Hilbert space. Also, slack variables can be introduced
to relax the strict requirement that the margin should perfectly separate the two
classes. The geometrical formulation of this model enables an exact optimization
procedure based on the dual of the Lagrangian. One of the first modern formulations
of the SVM model is given in (Boser, Guyon, & Vapnik, 1992).

A random forest is an ensemble model composed of multiple decision trees. One
of the first descriptions of this model is given in Breiman (2001). Each tree is
constructed from a subset of samples and using only a subset of the variables. In
the case of a classification task, each of the individual trees votes for the output
label of a given data example, whereas in the case of a regression task, the output
is the average prediction of all trees. The intuition is to obtain a set of deep trees
having a high variance but low bias. The average of these trees has thus a lower
variance than each individual tree, as long as these trees are uncorrelated. The tree
are made uncorrelated by sampling independently the set of samples and variables
used to train each of them.
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Data preprocessing

While the choice of model is important, it is equally important to consider a proper
choice of features, data preprocessing and evaluation measure. Feature choice is
limited by the available data infrastructure and usually consists of call detail records
on the course of a few weeks. Huang, Kechadi, and Buckley (2012) presented however
how new kinds of features, including demographics profiles, marketing segments, and
complaint information, can improve prediction accuracy.

Data preprocessing refers to the process following data acquisition and consists
of modifying the data in various ways before the use in a predictive model. This
comprises, non-exhaustively, feature engineering, data reduction, anomalies removal,
encoding of categorical variables, and data normalization (Zhang, Zhang, & Yang,
2003). Coussement, Lessmann, and Verstraeten (2017) give an overview of common
preprocessing steps used in churn prediction, and how careful preprocessing can
positively affect the performance of the model. They even show that a simple logistic
regression model applied to optimally preprocessed data competes with complex
learning algorithms such as neural network or support vector machine applied on
data preprocessed with a basic preparation procedure.

Recent years have witnessed the widespread usage of network-based classification
for churn prediction. Verbeke, Martens, and Baesens (2014) present some experi-
ment in this area of research. (Óskarsdóttir et al., 2017) perform an extensive bench-
mark of the different techniques proposed in the literature. The approach is based
on call detail records (CDR) containing the communication logs of the subscribers.
This data can be organized as a graph where nodes represent customers and edges
represent social ties between customers. The basic assumption of network-based
classifiers, which use such graphs to classify customers as churners or non-churners,
is that customers having social ties with churners are more likely to churn them-
selves. This assumption is purposely loosely defined, as its exact implementation
implies different assumptions and modeling decisions (Óskarsdóttir et al., 2017).
From that, one can either construct a predictive model that directly uses the social
graph, or extract features from the network and use them as the input of a con-
ventional classifier, or even combine the two approaches. The outcome of the two
articles is that relational and classical non-relational classifiers detect different types
of churners and that a combination of both types of classifiers approaches performs
best.

Óskarsdóttir, Van Calster, Baesens, Lemahieu, and Vanthienen (2018) present a
novel, end-to-end approach to the problem of churn detection where a time-varying
social network of the customer base is constructed, and a multivariate time series
is then extracted for each customer from this network. Then, different time series
classifiers are used to predict churn. A novel multivariate time series classifier is
proposed, an adaptation of the similarity forest classifier (Sathe & Aggarwal, 2017).
Óskarsdóttir et al. (2018) conclude that their approach outperforms state-of-the-
art time series classifiers and non-time-based models for early churn prediction.
However, static random forest and logistic regression are better at predicting late
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churn (that is, on short time scales).

Class balancing
It is important to consider class imbalance when designing models for churn pre-
diction. Indeed, the number of churners is usually very low compared to the total
number of customers, and most machine learning models are usually not suited to
handle highly imbalanced data (Batista, Prati, & Monard, 2004). Class balancing
techniques have to be used to tackle this problem. These techniques can roughly
be divided into three categories: data-level balancing, model-level balancing, and
ensemble methods.

Data-level balancing consists in modifying the dataset by either decreasing the
number of majority instances, increasing the number of minority instances, or both.
Random oversampling (ROS) consists in randomly replicating instances of the mi-
nority class, whereas random undersampling (RUS) randomly eliminates instances of
the majority class. ROS increases the risk of overfitting, by replicating exactly exist-
ing examples, whereas RUS loses information by removing potentially useful exam-
ples, thus increasing variance. Synthetic minority oversampling technique (SMOTE)
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002) addresses the overfitting issue by creat-
ing new instances of the minority class with linear interpolations between minority
example and their nearest neighbors. Several variations and improvements exist,
such as ADASYN (He, Bai, Garcia, & Li, 2008) and MWMOTE (Barua, Islam,
Yao, & Murase, 2014). Intelligent undersampling techniques also exist, such as the
one-sided selection (OSS) (Kubat, Matwin, et al., 1997) that removes redundant
or borderline majority instances, or the cluster-based undersampling (CLUS) (Yen
& Lee, 2009) that groups majority instances into clusters, and reduce the number
of instances in each cluster. Dal Pozzolo, Caelen, and Bontempi (2015) provide a
condition under which undersampling improves the ranking of test instances, which
depends on the class balance rate, the nonseparability of the data, and the variance
of the learning algorithm. This highlights the fact that no unique undersampling
strategy is adapted to all problems.

Model-level balancing consists in modifying the learning algorithm in such a way
that minority instances are given more importance, often through the use of asym-
metric misclassification costs. Ting (2002) applied this methodology to classification
trees, and Veropoulos, Campbell, and Cristianini (1999) to support vector machines.

Ensemble methods for class imbalance combine multiple models to obtain a bet-
ter overall model while taking into account class imbalance. For example, Roughly
Balanced Bagging (Hido, Kashima, & Takahashi, 2009) uses bagging to create mul-
tiple classifiers, each being trained by undersampling using a number of majority
instances determined by a negative binomial distribution. Chen and Breiman (2004)
proposes integrating balancing by random undersampling or misclassification weight-
ing into the random forest algorithm.

Since we use the ensemble balancing method EasyEnsemble (Liu, Wu, & Zhou,
2009) in this thesis, we present it here in more details. Given the set of positive
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Figure 2.1 – Easy ensemble methodology for unbalanced data. A set of random
forests is trained each on the whole set of positive instances, and on a randomly
chosen subset of negative instances. The final predictions are the average of all the
random forests individual predictions.

instances P and the set of negative instances N , data-level undersampling methods
consist in choosing a subset N ′ ⊂ N such that, by training on |N ′| ∪ |P|, the ratio
between positive and negative instances is suitable for a given learning algorithm.
It is common to choose a ratio of 1. The main issue with this approach is that a
large number of positive instances (i.e. all of N \ N ′) is ignored, thus increasing
the variance of the resulting trained model. EasyEnsemble overcomes this issue by
independently sampling T > 1 subsets N1, . . . ,NT from N . Then, T predictive
models are trained on all of P and individually on each Ni. The final predictions
are the average of the predictions of the T models. This process is pictured in figure
2.1. In our case, the predictive models are random forests.

Dal Pozzolo, Caelen, Waterschoot, and Bontempi (2013) showed that no unique
class balancing method works best in all situations, and they should be evaluated
and selected on a case by case basis. An extensive overview and comparison of
class balancing techniques in churn prediction is given in (Zhu, Baesens, & vanden
Broucke, 2017). Dal Pozzolo, Caelen, Le Borgne, Waterschoot, and Bontempi (2014)
compared several balancing techniques in the context of credit card fraud detection,
as well as solutions for other aspects of the fraud detection problem (online learning
and concept drift).
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Predicted P (s > t) Predicted N (s ≤ t)

Actual P (y = 1) True positives (TP ) False negatives (FN )

Actual N (y = 0) False positives (FP ) True negatives (TN )

Table 2.1 – Confusion matrix.

Evaluation measure
The last step of a predictive model assessment is the evaluation of classification
performance. Several performance measures exist for this purpose, such as preci-
sion, recall, F-score, area under the receiver operating characteristic curve (AUC),
lift, maximum profit criterion, and expected maximum profit criterion. We briefly
explain here these measures and their current use in the literature.

We first introduce the notion of confusion matrix, as shown in table 2.1. The
fact that a customer is a churner or not is labeled by the value of y, and corresponds
the first column. We also write a churner as an “actual P” (for positive instance),
and similarly a non-churner as “actual N” (for negative instance). The prediction of
a classification algorithm for a customer is a score s. If this score is larger than a
chosen threshold t, then the customer is predicted to be a churner, written “predicted
P”. Similarly, if the score s is below the threshold t, the customer is predicted not
to be a churner, written “predicted N”. The four possible combinations that these
two conditions yield are presented in the confusion matrix in table 2.1. The value of
each cell (TP, FP, FN, and TN) denotes the number of instances which meet both
of the corresponding criteria.

Precision is the fraction of true churners among all those we predicted to be
churners, and recall is the fraction of predicted churners among all the true churners
in the population.

precision = P (y = 1|S > t) =
TP

TP + FP

recall = P (S > t|y = 1) =
TP

TP + FN
In order to optimize both of these scores at the same time, one can use the F-

score (also called F1 score, or F-measure), which is the harmonic mean of precision
and recall.

F1 =
2× precision× recall

precision + recall
By using the harmonic mean, we punish low values in any of the two values. It

is sometimes used in the churn prediction literature (Ahmed & Maheswari, 2017;
Keramati et al., 2014).
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Receiver operating characteristic (ROC) curve (Krzanowski & Hand, 2009) is a
plot of all possible compromises between true positive rate (TPR) and false positive
rate (FPR). TPR is another name for recall, and FPR is the fraction of non-churners
falsely predicted to be churners, among all non-churners.

FPR = P (S > t|y = 0) =
FP

FP + TN

In order to compare the ROC curve of different models, we use the area under
the curve (AUC) as a measure of performance.

AUC =

∫ +∞

−∞
F1(s)f0(s)ds

AUC is very often used in churn prediction (Coussement et al., 2017; Mitrović,
Baesens, Lemahieu, & De Weerdt, 2018) because it is less sensitive to class imbalance
(few churners in a large population of customers) and misclassification cost (Verbeke
et al., 2012).

An important drawback of these performance measures is that they do not rep-
resent the real objective of churn prediction: given that we are certainly not able to
offer an incentive to all customers likely to churn, we have to restrict the retention
campaign to a limited number of customers. From that, we wish to minimize the
number of misclassifications occurring in this small subset of customers. This is the
definition of the lift: given a certain set of customers (usually the subset of the cus-
tomers with the highest predicted probability of churn), the lift is the ratio between
the churn rate in this set and the churn rate in the whole customer base.

lift(t) = P (y = 1|S > t)

P (y = 1)

The value of the lift indicates how much we do better than choosing customers at
random. For example, a lift of 3 indicates that the model will give a set of customers
with 3 times as much churners as if we picked that many customers at random. The
number of customers to consider is dependent on the application (it should ideally
be the number of customers reachable by the retention campaign), but a lift at 10%
is sometimes used as a baseline (Verbeke et al., 2014; Zhu et al., 2017).

In order to determine formally how many customers should be included in the re-
tention campaign, and therefore in the lift measure, Verbeke et al. (2012) developed
the maximum profit criterion (MPC) and the expected maximum profit criterion
(EMPC) (Verbeke et al., 2012; Verbraken, Verbeke, & Baesens, 2013). These two
measures consist of evaluating the expected costs and benefits of conducting a reten-
tion campaign and selecting the optimal number of customers to call. The difference
between MPC and EMPC is that MPC considers the cost and benefits to be known
and fixed, while EMPC assigns a probability density function to these parameters.
MPC and EMPC are often used in churn prediction (Óskarsdóttir et al., 2018;
Stripling, vanden Broucke, Antonio, Baesens, & Snoeck, 2018; Zhu et al., 2017).



16 CHAPTER 2. STATE OF THE ART

2.2 Causal analysis
Finding and using causes is crucial in human reasoning and decision making. While
a predictive model returns the probability of a target value given that we observe
a certain input vector, a causal model is supposed to return the target probability
given that we set (e.g. by intervention) that input. The aim of causal analysis is
to determine the consequences of manipulations and is opposed to the process of
making predictions from observations. When used as a feature selection criterion,
it enables increased robustness to violation of the assumption of independent and
identical distributions (e.g. concept drift) (Guyon, Aliferis, et al., 2007) and an en-
hanced understanding of the mechanism underlying the data. The gold standard for
causal modeling is to carry out randomized controlled experiments (Fisher, 1937).
For example, in order to assess the influence of moderate wine consumption on heart
disease, it is not enough to measure wine consumption and heart disease in the pop-
ulation. This may lead to erroneous conclusions, such as a socio-economic factor
that causes both increased wine consumption and risks of heart disease. In order
to avoid such a problem, one may assign to a randomly chosen group of people a
moderate wine consumption. If this group then shows a significantly different risk
of heart disease, then we may conclude that a causal relationship indeed exists, and
the apparent correlation is not due to a confounding factor. However, such experi-
ments may be expensive, unethical, difficult to implement or unfeasible. This, along
with advances in computation, data storage capabilities and new machine learning
techniques, led to the development of causal inference based on observational data.
We review here 5 approaches to data-driven causal inference:

• Bayesian network learning

• Markov blanket inference

• Information-theoretic filters

• Bivariate methods

• Supervised methods

All the approaches model causal relationships between random variables. These
random variables represent, for example, the different features available about a
customer in the churn prevention problem.

Bayesian network learning
A causal Bayesian network is a discrete acyclic graph where the set of nodes corre-
spond to the set of random variables, and a directed link indicates a causal relation-
ship between two variables. This graph is also accompanied by the joint probability
distribution of the set of random variables. Two conditions are usually imposed on
the graph and the probability distribution (the causal Markov condition and the
causal faithfulness condition, explained in section 4.1) to ensure that it respects the
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semantics of a causal model. Notably, these conditions also allow predicting the
effect of a manipulation (Spirtes, 2010). Causal Bayesian network can be learned
from observational data, and two types of procedures have been developed for that
purpose. The first one consists in a search in the graph structure space, and opti-
mization a fitness function. This approach is detailed in (Heckerman, 1998). The
second one is based on independence tests between pairs of variables, and iteratively
construct and orient edges until a valid class of causal graphs is found. The PC and
FCI algorithms use this approach (Spirtes, Glymour, & Scheines, 1993).

Markov blanket inference
The Markov blanket of a given target variable in a Bayesian network is a minimal
set of variables that are shielding the target variable from the influence of other
variables in the network. A formal definition is given in section 4.1. This subset of
variables contains all the information needed to predict the target variable (that is,
any additional variable would be redundant). Moreover, if the causal Markov and
faithfulness assumptions hold, then this Markov blanket is the set of direct causes
(parents), direct effect (children), and also the direct causes of the direct effects
(spouses). Inferring the Markov blanket of a variable, as opposed to inferring the
complete Bayesian network, is beneficial when the number of variables is large, such
as in microarray data. Several algorithms exist for Markov blanket inference, notably
KS (Koller & Sahami, 1996), GS (Margaritis & Thrun, 2000) IAMB (Tsamardinos,
Aliferis, & Statnikov, 2003), HITON (Aliferis, Tsamardinos, & Statnikov, 2003), and
MMPB (Tsamardinos, Aliferis, & Statnikov, 2003). These algorithms start with an
empty Markov blanket and search for parents, children, and spouses of the target
variable by using conditional independence tests. A number of heuristics are used
to speed up the search, and most of these algorithms also include a second phase
where false positives are removed from the result.

Information-theoretic filters
A filter algorithm is a feature selection method that provides a ranking of the input
variables, based on some measure of statistical association with the target variable.
The best-ranked variables are then selected in order to reduce the computational
requirements of the learning algorithm. Usual filter variable selection methods suffer
from several drawbacks. For example, multiple variables may all provide the same
information about the target (the extreme case occurring when a variable is actually
a copy of another). In a univariate ranking approach, all of these variables would be
included in the result, even though one is sufficient. Another typical problem occurs
when two or more variables are not very predictive when taken individually, but on
the contrary, are predictive once used conjointly. These notions can be formalized
using information theory, and information-theoretic filters are designed to avoid the
exposed pitfalls. Another advantage of such filters is that they do not make any
assumption about the statistical distribution on the variables, thanks to the use of
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mutual information as a dependency measure. State-of-the-art information-theoretic
filters include mRMR (Peng, Long, & Ding, 2005), DISR (Meyer, Schretter, & Bon-
tempi, 2008), REL (D. A. Bell & Wang, 2000), CMIM (Fleuret, 2004), and FCBF
(Yu & Liu, 2004). These algorithms vary on whether or not they take comple-
mentarity into account, if they avoid the estimation of multivariate density and if
they return a ranking of the variable (as opposed to an unordered set of relevant
variables). These filters can also be designed to explicitly favor variables having a
direct causal influence on the target, thanks to dependence relationships uniquely
exhibited by children, spouses and parents of the target. This is the case of the
mIMR (Bontempi & Meyer, 2010) and the MIMO (Bontempi et al., 2011) filters.

Bivariate methods
In the last decade, there is an increased interest in telling cause from effect from
observational data on just two variables. This task is based on asymmetric proper-
ties of the joint distribution of the two variables, and because of the limited number
of possible causal configurations, usual classification metrics can be used to assess
the performance of inference methods. Moreover, the nature of the problem al-
lows using classical machine learning algorithms for cause/effect classification. This
approach gained interest through the organization of public a public challenge on
Kaggle (https://www.kaggle.com/c/cause-effect-pairs). This competition resulted
in several novel solutions for cause-effect detection, and a general advance in the
state of the art. The winner of the challenge, the team ProtoML, extracts a large
number of features from the variable distributions and uses a large number of models
for classification. The second-ranked participant, jarfo Fonollosa, 2016, uses condi-
tional distributions and other information-theoretic quantities to infer features that
are used for prediction. The general outcome of this challenge is that asymmetries
in causal patterns enable the development of bivariate causal distinguishers, with
an accuracy significantly better than random.

Supervised methods
In the context of the aforementioned cause-effect pair competition, Bontempi and
Flauder (2015) proposed an algorithm using asymmetries in the conditional distri-
butions of the variables. They extended their method to a setting with more than
two variables, by also extracting distribution features from other variables and using
them to infer the existence and direction of a causal link in the two initial variables.
This benefit is striking in the case of a collider configuration x1 → x2 ← x3: in this
case, the dependency (or independence) between x1 and x3 tells us more about the
link x1 → x2 than the dependency between x1 and x2. By using a learning machine
such as random forest, these features can be used to successfully infer causal links,
competing with and often outperforming state-of-the-art Bayesian network inference
methods.

https://www.kaggle.com/c/cause-effect-pairs


Chapter 3

Churn prediction

3.1 Data
The data used throughout this work is a monthly summary of customers’ activity,
mobile data usage in MB, number of calls and messages, along with information
about the type of subscription, hardware, and socio-demographic information. This
amounts to a total of 73 variables. The dataset comprises one entry per customer
and per month, and a total of 5 months are present from the year 2018. About 1.5
million entries are present per month, for a total of about 7.6 million entries in the
entire dataset. The target variable, churn, is represented as a date if the client is
known to have churned, or an empty value otherwise.

Two kinds of contracts are present in this dataset, that we will call SIM only
and loyalty. The first type refers to a subscription where the customer can churn
freely at any time. This differs from the second type where the customer receives
a large discount on the purchase of a mobile phone but agrees not to churn for
a certain period of time, usually 24 months. If the customer decides nonetheless
to stop his subscription before the term of the contract, she has to pay back the
remaining discount. After the data preprocessing step (presented in section 3.2), we
are left with a total of about 5 millions entries corresponding to SIM only contracts,
and about 250,000 entries corresponding to loyalty contracts. Therefore, we will
mainly focus on SIM only contracts, for its broader impact on the customer base
and its increased statistical significance. Some of the experiments will nevertheless
be conducted on both types of contracts, in order to understand the differences in
the churn dynamic.

Note that the number of entries in the loyalty dataset does not correspond to
the real number of customers having this type of contract. This is due to the way
the loyalty data entries are filtered. We focus only on customers approaching the
end of the mandatory period of the contract, since it is at this point that the churn
rate raises. Before this period of time, the churn is almost non-existent, due to the
remaining discount to be paid back by the customer. We consider a time frame of
2 months, explaining the low number of data entries under consideration.

Due to commercial reasons, a non-disclosure agreement prevents us from com-
municating precise details on the variables being used or the rate of churn in the
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customer base of Orange. The churn prediction problem is highly imbalanced, but
we cannot disclose the exact ratio between churners and non-churners. The name of
the different variables is limited to a letter corresponding to one of the 6 aforemen-
tioned categories and a number to differentiate variables among a category. We are
able to disclose the exact name of a variable when its meaning is relevant for the
discussion and its disclosure would not have a negative impact on confidentiality.

The 73 variables are grouped into 6 categories. We denote each variable by a
letter corresponding to its category, and a number to differentiate it from others in
the same category. The different categories are

• Subscription (17 variables, initial S)

• Calls and messages metadata (11 variables, initial C)

• Mobile data usage (16 variables, initial U)

• Revenue (14 variables, initial R)

• Customer hardware (6 variables, initial H)

• Socio-demographic (5 variables, initial D)

The 4 remaining variables are the churn date, the timestamp of the data entry
and two customer identifier columns.

Most variables are continuous, such as the duration of phone calls, or the amount
paid on the last bill. There are however a few discrete variables, either taking integer
or categorical values. Such variables include the province of residence of the customer
or the number of active contracts. We present in this section a descriptive analysis of
some variables, in order to understand, prior to any machine learning modeling, how
they are distributed, and how they interact with each other. General patterns are
qualitatively discussed in the text, and the figures support the discussion whenever
possible.

One of the categorical variables represents the proportion of customers having a
cable subscription besides their mobile phone subscription, such as for television or
landline phone. There are fewer cable subscriptions among churners, and this fact
is well known for Orange Belgium: a client having the cable will be less willing to
churn, since this represents a significant investment in money and time. Another
variable corresponds to the payment type for the bill. The two main types are
automatic debit and bank transfer. We observe that more people among the churners
chose the bank transfer. Although this is only speculation, this might be caused by
the “bill shock” effect: when a client consumed more calls, messages or data than
provisioned by its tariff plan, she has to pay an extra amount of money called out-
of-bundle (OOB). When this amount is large, the client is more likely to get upset,
and therefore is more likely to churn. But if her invoice is paid with an automatic
debit, she may not notice this fact straight away, and this can thus be a reducing
factor of churn.
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Figure 3.1 – Out-of-bundle amount (extra amount to pay on top of the usual invoice),
in logarithmic scale.

The bill shock effect is demonstrated in a more straightforward way in figure 3.1.
The distribution of OOB is plotted for churners and non-churners on a logarithmic
scale. Note that the probability density estimation function used in this figure and
in figure 3.2 uses a Gaussian kernel. This results in a distribution resembling a
mixture of Gaussian, even though the underlying probability density may not be
Gaussian. There is a clear discrepancy between the distributions of churners and
non-churners in figure 3.1, with churners having more often a large OOB. This fact
is often used to establish expert rules when conducting churn retention campaign: if
a customer is likely to churn and has a large OOB, then a tariff plan more adapted
to her usage profile is proposed. Another possible action to be taken in such case
would be to offer a discount on the invoice in order to directly mitigate the bill
shock. However, this approach is a short term solution, and the customer is likely
to have a large OOB on the following invoices.

The importance of the tenure (the duration of the current subscription) is shown
in figure 3.2. This graph displays the density of clients as a function of the tenure.
For confidentiality reasons, the scale of the x-axis is hidden. The curve can be
divided into two components: new customers and long-term customers. One can
clearly observe that proportionally more churners are present in the first component
than in the second. This indicates that long-term clients tend to churn less, whereas
new clients are much riskier.

Figures 3.3 and 3.4 show the distribution of two discrete categorical variables.
The first variable, R14, is a binary flag related to revenues and is slightly less often
true among churners. The second variable, H8, is a categorical variable related to
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Figure 3.2 – Tenure (time spent without churning so far) for churners and non-
churners.

hardware and takes 8 different values. The churn rate varies moderately depending
on the value of this variable.

We demonstrate the interaction between two categorical variables in figure 3.5.
The horizontal axis indicates whether a customer has a cable connection, and the
vertical axis denotes the payment responsible flag. This flag is set to false only
when someone else pays the bill of the customer, such as a parent. Most customers
of Orange Belgium do not have a cable connection, and are responsible for the
payment, as indicated by the radius of the spots. The color of the spots indicates
the churn rate, with a lighter color denoting a higher probability of churn. The area
is proportional to the number of clients in each category. The impact of both binary
variables appears clearly, with a significant difference of churn rate between the two
extrema. Once again, the precise value of churn rate cannot be disclosed.

A principal component analysis (PCA) demonstrates the important overlap be-
tween churners and non-churners (figures 3.6 and 3.6). The blue corresponds to
non-churners, while the orange and yellow represent the churners respectively in the
validation and the test set. We explain how the test set and the validation set are
partitioned in section 3.3. The ellipses represent the contour lines of covariance,
that is, the set of points at a Mahalanobis distance of 1 from the mean in each
set. The mean of each set is pictured as a dot in the center of the figure. A large
overlap between the population of churners and non-churners appears clearly. Also,
the standard deviation is larger in the population of churners, reflecting the inter-
pretation that churn is associated with larger values for the out-of-bundle amount,
number of calls, data usage, etc.



3.1. DATA 23

0.00

0.25

0.50

0.75

1.00

Non−churner Churner

P
ro

p
o
rt

io
n

R14 is false

R14 is true

Figure 3.3 – Distribution of a binary
variable related to revenues, R14, for
churners and non-churners.

H8 value 8

H8 value 7

H8 value 6

H8 value 5

H8 value 4

H8 value 3

H8 value 2

H8 value 1

Zero Low High

Churn rate

Figure 3.4 – Distribution of churn rate
depending on a categorical variable
related to hardware, H8.

No

Yes

No Yes

Cable connection

P
a
y
m

en
t 

re
sp

o
n
si

b
le

Low

Medium

High

churn

Figure 3.5 – Interaction between cable connection and payment responsible. A
customer is not responsible for payment if someone else (e.g. a parent) pays the
invoice in her stead. The color of the spots denotes the churn rate, whereas its area
denotes the number of customers.



24 CHAPTER 3. CHURN PREDICTION

●● ●

−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5 5.0

PC 1

P
C

 2

● ● ●Churn test Churn validation Non churn

Figure 3.6 – Projection of the dataset onto the first two principal components. The
ellipses show the set of points at a Mahalanobis distance of 1 from the mean of each
group, which are represented by a dot.
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mean of each group, which are represented by a dot.
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This data analysis demonstrates the high complexity of the churn prediction
problem. No unique variable allows to unambiguously predict churn since there is
a significant overlap between the population of churners and non-churners. Infor-
mative variables such as the tenue (figure 3.2) or the out-of-bundle amount (figure
3.1) allow to increase or decrease the confidence into churn only marginally. A large
number of variables must be used in conjunction in order to achieve decent predictive
performances. Moreover, we have no guarantee that the set of available variables
are sufficient, it is easily conceivable that unknown factors, such as a promotion
launched by a concurrent company, play a significant role.

3.2 Data preparation
The data preparation is of a sequence of steps.

Unknown values preprocessing The original data uses various means to specify
an unknown categorical value. For example, an unknown previous tariff plan
is either represented by an empty string, the string "u", the string "null" or
a null value. This preprocessing step replaces these various encodings by a
unique one. Also, missing values in continuous variables are either replaced
by zero or by the mean of the variable, depending on the semantics (e.g. null
data usage is replaced by zero, whereas missing age is replaced by the average
age in the dataset).

Date encoding Some fields are represented by a date, such as the last contract
change, the date of contract activation, or the churn date. These fields are
converted to the number of days between the first day of the month of the
dataset entry and the field value. For example, let us consider an entry about
the activity of a customer in January 2019. Say this entry contains a field with
the contract activation date, with value "20 December 2018". This field is
converted to an integer value of 12, since there are 12 days between 1st January
2019 and 20 December 2018.

Clustering of character strings There are three character string variables, rep-
resenting the current and the previous tariff plan, and the manufacturer of
the customer’s device. These three variables could be considered as categori-
cal variables, but the high number of different values would make this difficult
to implement. We alleviate this difficulty by clustering all the different values
into a small number of groups. In the case of the two tariff plan variables, this
corresponds to the different tariff plan options (Hummingbird, Koala, Eagle,
etc). For the device manufacturer, we keep the 7 most common values, and
we replace all the less frequent values by ”Other”.

Difference and ratio columns For each numerical field representing a quantity
that can change from month to month (such as the total duration of calls,
or the mobile data usage), we create 2 additional fields. They contain the
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difference and the ratio of the value of the field with that of the same field the
previous month. This hopefully gives the model an indication of the customer’s
behavior evolution over the course of the last month. 41 variables are suitable
for this operation, therefore increasing the number of variables up to 155. If no
data is available for the previous month (such as for the first month of data),
the differences are set to 0 and the ratios are set to 1. In order to reduce
computation time, not all experiments use these new columns, as discussed in
the next section. This augmented dataset is named “SIM only ∆” thereafter.

Normalization The data is normalized to obtain zero mean and unit variance.
Even though the only models being used are random forests, which are not
sensitive to linear scaling of its input variables, this step is kept in the event
that we would have tried another model requiring normalization (such as sup-
port vector machine or neural networks). This preprocessing step is also useful
for sensitivity analysis, where we add a small value to a variable and observe
the difference in the predictions of the model. In this case, a normalized
dataset allows to use the same difference value for all variables.

Target variable The last step is to create a binary target variable from the churn
date. It is defined to be true if and only if the date of churn is in the two
months following the current data entry. If the churn date is in the current
month or before, then the entry is discarded, for two reasons. Firstly, the
information contained in these entries is incomplete. Secondly, this data is
not relevant for churn prediction, as we wish to predict churn at least a few
days in advance. It is not interesting to learn patterns exhibited by clients that
will churn the next day, as there is probably no longer any hope of successful
retention. If the churn date is not given, or if it is more than two months after
the month of the data entry, the churn variable is set to false. This process is
pictured in figure 3.8. The choice of the time threshold is dependent on the
business application. A lower threshold focuses on short-term churn, whereas
a larger threshold enables to predict churn from further in the future. Models
already in use at Orange Belgium consider a time period of two months, we
therefore use this value in order to enable the comparison of our results with
production models.

3.3 Experiments

Scope
The experiments on predictive modeling consist in the training of predictive models
on the data described in the previous sections, and an assessment of their perfor-
mance. Three datasets are derived from the output of the preprocessing step: one
containing the loyalty contracts, one containing the SIM only contracts, and one
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Figure 3.8 – Outline of the target variable assignment. The dataset is separated in
5 months and each data entry in each month is labeled as churner if the churn date
is given and less than two months ahead.

containing the SIM only contracts with difference and ratio variables (called SIM
only ∆). We evaluate the impact of

1. variable selection, based on the feature importance provided by trained ran-
dom forest models;

2. the addition of difference and ratio variables;

3. the type of contract (SIM only vs. loyalty).

The high computational cost of the model training on such a large dataset does
not allow to test all the possible configurations of these three parameters. We limited
the number of selected variables to 20, 30 or all variables. Also, we do not explore the
difference variables for loyalty contracts. These combinations of parameters yield 9
different experiment configurations.

Data segmentation
In each configuration, the corresponding dataset is split into a training and a test
set. The training set comprises the first 4 months of data and the test set comprises
only the last month, as pictured in figure 3.9. Separating by months allows for a
potential concept drift from the training set to the test set (i.e. a change in the
typical behavior exhibited by churners). We perform a k-fold cross-validation on
the training set in order to provide an indication of the performance of our model
on the training data. We set k = 3, as a compromise between statistical significance
and computation time. The difference in prediction accuracy between the validation
set and the test set indicates how much patterns learned on the training set are still
relevant for the next month. This indicates whether training has to be repeated
each month as new data arrives from the customers. Note that when testing the
model on the test set, a new model is trained on the whole training set.
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Figure 3.9 – Outline of the data repartition between training and test set, with a
3-fold cross-validation on the training set. Dotted arrows indicate testing and solid
arrows indicate training. Arrows for two of the three validation models are not
shown.

Class balancing
In order to counteract the sheer prominence of non-churners in the dataset, we need
to use class balancing. We use the EasyEnsemble algorithm, presented in section 2.1.
It consists in training different models on the whole set of positive instances, and
on a randomly selected set of negative instances. The number of negative instances
is chosen so that the ratio between the two classes is even. In all experiments, the
EasyEnsemble is set to use 10 random forest models.

Evaluation measure
The performance of the different models is evaluated using three different measures:
the lift curve, the receiver operating characteristic (ROC) curve, and the precision-
recall (PR) curve. While the ROC curve and the PR curve are widely used in the
machine learning literature, the lift curve is of more practical interest in evaluating
churn prediction. Since a customer churn retention campaign focuses on a limited
amount of customers, the lift curve allows observing the expected performance of
the model as the number of customers included in the campaign varies. From the
ROC and PR curves, we derive the area under the ROC curve (AUROC), the area
under the PR curve (AUPRC) and the lift at different thresholds (1%, 5%, and
10%).

We argue that the most sensible cost evaluation functions are the maximum
profit criterion (MPC) and the expected maximum profit criterion (EMPC) (Verbeke
et al., 2012; Verbraken et al., 2013). These take into account the different costs
and benefits yielded by a retention campaign and provide the decision threshold
that should be applied to maximize the profit given the probability distribution
output by a prediction algorithm. This process formalizes the intuition behind the
lift criterion that the prediction algorithm should focus on reducing false positives,
since the retention campaign is not able to reach each and every potential churner.
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Despite the relevance of this approach under a profit-centric point of view, we are
not able to use this evaluation measure in our study. This is caused by the necessity
to evaluate different costs and benefits parameters, such as the cost of reaching a
customer, the probability that a customer accepts an incentive, the benefit if the
customer accepts it, etc. The evaluation of these parameters is a time-consuming
process and is outside of the scope of our work.

Sensitivity analysis
The impact of variables on churn prediction is derived in two different ways. The
first corresponds to the variable importance output by the random forest models.
Each random forest calculates a score for each variable by measuring how much
the prediction accuracy decreases when all the values of this variable are randomly
permuted. The decrease in accuracy is calculated over the out-of-bag samples in each
tree. This permutation cancels out any statistical dependency between this variable
and the target variable, giving an estimate of the importance of the variable in the
trained model. Note that if two variables share the same information about the
target (for example by being highly correlated), the importance of both of these
variables will be less than if only one were present. This is due to the fact that the
two variables are equally likely to be chosen when splitting nodes in a tree, therefore
reducing the impact of the removing one of the two variables when computing the
importance.

This measure of importance allows to understand the predictive power of each
variable but does not indicate the directionality of its impact on the predictions.
We address this issue by constructing, for each variable Xi, an alternate training
set identical to the original one, but where a value equal to one standard deviation
σXi

is added to each instance of the variable Xi. A second shifted dataset is also
constructed by subtracting instead of adding the standard deviation. Then, the
average predicted probability of churn is computed for both the original training
set and the shifted one, and the difference between the two average probabilities is
taken. This difference indicates the impact of the variable on the predictions. For
example, a predicted churn probability lower for the training set where a standard
deviation is added to the tenure variable indicates that longer-standing customers
are associated with less churn. Note that we use in this experiment the normalized
dataset so that adding a standard deviation amounts to adding 1 to the instances
of the variable.

3.4 Results
This section shows the results of the predictive experiments. Figures 3.10 to 3.18
are performance curves for the three different datasets. Each plot contains a curve
for both validation and test sets, and for the configurations where we select 20, 30
or all of the variables. This amounts to a total of 6 curves per plot. As explained
in section 3.3, the validation is done on the 4 first months of data, whereas the test
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SIM only SIM only ∆ Loyalty
20 30 All 20 30 All 20 30 All

AUROC 0.66 0.73 0.73 0.72 0.73 0.69 0.74 0.76 0.76
AUPRC 0.05 0.10 0.10 0.10 0.10 0.08 0.15 0.19 0.18
Lift at 10% 2.25 3.34 3.41 3.27 3.42 3.03 2.96 3.40 3.30
Lift at 5% 2.64 4.49 4.68 4.48 4.67 4.09 3.51 4.22 4.02
Lift at 1% 4.29 9.20 9.53 10.09 9.95 7.67 4.66 6.65 6.16

Table 3.1 – Summary of the results of prediction experiments on the test set. Highest
values for each type of contract and for each evaluation measure are underlined for
the test set.

set corresponds to the last month. Figures 3.10 to 3.12 show the lift curves, figures
3.13 to 3.15 show the ROC curves, and figures 3.16 to 3.18 show the precision-
recall curves. A summary of the results is given in table 3.1. The lift at different
thresholds, the area under the ROC curve, and the area under the precision-recall
curves are reported for the test set. Table 3.2 provides the same information for
the predictions on the validation set. The impact of the different experimental
parameters on predictive performance is discussed in the next sections.

In this section, numerical scores associated with variables are displayed as hor-
izontal bar plots. The colors of the bars correspond to the categories of variables
presented in section 3.1:

� Subscription

� Calls and messages

� Mobile data usage

� Revenue

� Customer hardware

� Socio-demographic

Number of variables
The number of variables has an influence on the prediction accuracy, and this impact
depends on the dataset under consideration. Recall that in each configuration, the
selected variables are chosen according to the variable importance given by the
random forests trained on the whole training set. In the case of the SIM only
dataset (figures 3.10, 3.13 and 3.16), selecting only 20 variables decreases drastically
the performance. Selecting 30 variables achieves performances almost as good as
selecting the whole set of 73 variables.

For the SIM only ∆ dataset, a lower number of variables is beneficial for perfor-
mance. As shown in figures 3.11, 3.14 and 3.17, selecting all variables appears to
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Figure 3.10 – Lift curve for SIM only

5

10

15

0.000 0.025 0.050 0.075 0.100

Portion of selected customers

L
if
t

Test 20 variables

Test 30 variables

Test all variables

Validation 20 variables

Validation 30 variables

Validation all variables

Figure 3.11 – Lift curve for SIM only with difference and ratio variables
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Figure 3.12 – Lift curve for loyalty
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Figure 3.13 – ROC curve for SIM only.
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Figure 3.14 – ROC curves for SIM only with difference and ratio variables.

be detrimental to the accuracy, whereas choosing between 20 or 30 variables does
not make a significant difference. This might be caused by the additional variables
that add more noise than useful information for the random forests. It is inter-
esting to note that selecting the top 20 variables when considering the SIM only
∆ dataset provides much better accuracy than selecting the top 20 variables in the
original dataset. As shown in figure 3.20, the 20 most important variables in the SIM
only ∆ dataset do not even include any difference or ratio variable. The difference
between the top 20 most important variables is as follow:

• SIM only ∆ includes the number of contracts, the age, and a variable on data
usage, whereas SIM only does not;

• SIM only includes the device manufacturer, the previous tariff plan, and two
other variables on data usage, whereas SIM only ∆ does not.

The large difference in accuracy between these two configurations must be caused
by this difference in the selected variables, since all other variables and all other
experiment parameters are identical.

When considering the loyalty dataset, selecting 30 variables instead of the whole
set of 73 variables is marginally beneficial on low thresholds (less than 0.1). On the
overall space of thresholds, the difference is not significant, as indicated in table 3.1
with the AUROC and the AUPRC. However, selecting only 20 variables is clearly
detrimental.
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Figure 3.15 – ROC curves for loyalty.

Difference and ratio variables

The difference and ratio variables do not have a positive impact on performance.
Indeed, the best performance achieved on the SIM only ∆ dataset are obtained by
limiting the number of variables to 20 or 30. The variables being selected in these
cases do not include any of the difference and ratio variables. If all variables are used,
the performance of the random forests decreases significantly, as shown in figures
3.11, 3.14, 3.17, and table 3.1. Moreover, the memory usage of this dataset is much
higher than that of the original dataset, thus complicating the training process.

Generalization performances

The generalization abilities of the trained models are evaluated by comparing the
accuracy on the validation set and on the test set. On the lift curves and on the
precision-recall curves, it appears that for all configurations, the performance on the
test set is better than on the validation set. Bear in mind that on these curves,
only a small fraction of the threshold space is represented, whereas the ROC curves
show all possible decision thresholds. This observation implies that customers with
a very high probability of churn are proportionally more numerous in the test set
than in the validation set. It is illustrated in figures 3.6 and 3.7, where the ellipse
of covariance of the test set is larger than that of the validation set. This suggests
that, in the test set, there are more churners with very high values for variables
having a large standard deviation. This probably corresponds to the bill shock
effect discussed in section 3.1: a large “out of bundle” amount, caused by large data
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Figure 3.16 – Precision-recall curves for SIM only.
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Figure 3.17 – Precision-recall curves for SIM only with difference and ratio variables.
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Figure 3.18 – Precision-recall curves for loyalty.

SIM only SIM only ∆ Loyalty
20 30 All 20 30 All 20 30 All

AUROC 0.64 0.73 0.74 0.74 0.74 0.70 0.76 0.78 0.77
AUPRC 0.04 0.08 0.08 0.09 0.09 0.07 0.13 0.16 0.15
Lift at 10% 2.10 3.16 3.39 3.39 3.44 3.01 3.22 3.57 3.50
Lift at 5% 2.41 4.11 4.52 4.49 4.57 3.90 3.71 4.30 4.18
Lift at 1% 3.24 7.58 8.36 8.80 8.67 6.79 5.00 6.37 6.11

Table 3.2 – Summary of the results of prediction experiments on the validation set.

consumption, increases the probability of churn. In this case, the bill shock is more
pronounced in the test set, explaining the improvement in predictions.

The performance measures on the validation set are summarized in table 3.2.
When we compare the lift at low thresholds in table 3.1, it is clear that the model
manifests worse performance on the validation set than on the test set. However, it
is not the case for the AUROC and the AUPRC, which take into account the whole
space of decision threshold, and not only the riskiest customers. We can conclude
that our model has been trained on a training set where the overlap between churners
and non-churners is more important than on the test set. The model thus generalizes
well, and even perform better on unseen data in our case due to a lucky domain
shift.
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Type of contract
As indicated in table 3.1, the models trained on loyalty perform slightly worse than
that of the SIM only datasets on small thresholds, but better on larger thresholds.
The AUROC is equal to 0.76 for loyalty, whereas the best performing configuration
for SIM only achieves an AUROC of 0.73. The AUPRC is almost double, and this
can be seen in figure 3.18. The precision is similar to that of the SIM only for low
recall but decreases much more slowly. It is still at approximately 0.25 when the
recall is 0.2, whereas, in the SIM only PR curves, the precision is already at 0.12 at
this threshold.

Recall that there are fewer loyalty customers than SIM only, less confidence
can thus be given to the statistical results for loyalty, especially at low thresholds.
According to these results, the models trained on the loyalty customers are slightly
less efficient on small thresholds, but this is made up for on larger thresholds. The
increase in performance is probably due to the more obvious churn patterns exhibited
by loyalty customers. Indeed, most of the churn in this population is due to the
end of the mandatory period of the subscription. This is reflected in figure 3.21,
where time-related variables are prominent in variable importance. Given that we
know when the mandatory part of the customer’s contract ends, the confidence of
the model in the probability of churn is increased compared to the SIM only case.

Sensitivity analysis
The results of sensitivity analysis are shown in figures 3.19 to 3.23. Figures 3.19
to 3.21 show the variable importance given by the random forest models. There is
one plot per dataset, and in each plot, the importance of each variable is averaged
over the 10 models underlying the Easy Ensemble meta-model. As discussed in the
previous section, the most important variables for the SIM only and the SIM only ∆

datasets are almost identical. They consist in a mix of socio-demographic variables
(e.g. the province), information about the tenure and the tariff plan of the customer,
and aggregate variables related to phone calls. The difference and ratio variables
are ranked fairly low for SIM only ∆, the first one having a rank of 40 (not shown
in figure 3.20). On the other hand, the selected variables for the loyalty dataset
(figure 3.21) are quite different. The tenure (first and third variables) and other
time-related variables on the subscription are all important variables. Information
relative to the type and time of subscription is therefore important for predicting
churn in loyalty contracts. This is illustrated by the yellow color dominating the
graph. Also, the age is more important than for the SIM only dataset, as well as
the variables U1, U2, and U3, corresponding to data usage. This is consistent with
an interpretation of a younger and fickler customer base, consuming more data and
more prone to churn.

Figures 3.22 and 3.23 display the shift in predicted churn probability when a
variable is offset by one standard deviation. Figure 3.22 corresponds to an increase
in the value of each variable, whereas figure 3.23 corresponds to a decrease. The
tenure and the number of contracts have a symmetric effect: an observed increase
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Figure 3.19 – Mean decrease in accuracy when a feature is removed for SIM only.

in their value reduces the probability of churn, and conversely. For the tenure, this
corresponds to the intuition that a newer customer is more prone to churn. The
number of contracts is a marker of commitment of a customer to Orange, and the
presence of this variable in both figures 3.22 and 3.23 expresses that it has also a
monotonic relation to churn probability.

On the other hand, all other variables in this sensitivity analysis display a non-
linear relationship to predicted churn probability. This is remarkably illustrated by
the prominence of variables related to revenues in figure 3.22, colored in purple.
These variables increase the predicted probability of churn when they are increased,
as expected by the bill shock effect. However, they are absent from figure 3.23,
indicating that a reduced bill is not associated with a reduced churn. It is worth
mentioning that the age is associated in both graphs with an increased risk of churn.
Consequently, any age far from the average age is associated with an increased risk
of churn.

Bear in mind that this analysis is solely indicating statistical associations be-
tween the values of different variables and the predicted probability of churn. It is
by no means an indication of causality. For example, the number of contracts is in-
versely associated with the risk of churn. It is tempting to conclude that selling new
contracts to customers will therefore reduce their risk of stopping their subscription.
Nevertheless, the analysis does not confirm this hypothesis: it might be the case
that a satisfied customer is typically not likely not churn and is also more prone to
buying new services. In this case, the churn and the number of contracts have a
common cause (customer satisfaction), and manipulating the number of contracts
will not modify the risk of churn. Also, the magnitudes of the difference in churn
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Figure 3.20 – Mean decrease in accuracy when a feature is removed for SIM only
with difference and ratio variables.
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Figure 3.22 – Difference in the predicted probability of churn when a standard
deviation is added separately to each variable. Run on the SIM only dataset. Only
variables inducing a difference having an absolute value greater than 0.01 are shown.

rates should not be considered as realistic, meaningful values. We added a standard
deviation to each variable, regardless of whether a standard deviation makes sense
for each variable. For example, the number of contracts is typically not distributed
according to a Gaussian distribution, since it takes as value only small positive in-
tegers. We can expect most of the decision trees composing our model to choose a
split point close to 1 for this variable, in order to categorize clients as either hav-
ing 1 contract or more. Adding a standard deviation to the variable would change
the path of each sample in these trees. This explains the disproportionate 15% of
difference in churn rate in figure 3.23.

3.5 Comparison to the state of the art
In this section, we compare our results to other studies in churn prediction. Of
the 20 articles in our bibliography related to churn prediction, 15 are empirical
studies either suggesting a new method or comparing existing methods. 7 of these
15 articles use precision, recall, accuracy, and F-measure as evaluation measures.
These evaluation measures are applicable when the output of the prediction model
is a hard label, such as for a support vector machine or a decision tree. However, our
experiment uses an ensemble model composed of random forests and the predictions
take the form of a score between 0 and 1. This implies that a decision threshold has
to be chosen when classifying customers as churners or non-churners. The precision,
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Figure 3.23 – Difference in the predicted probability of churn when a standard
deviation is subtracted separately from each variable. Run on the SIM only dataset.
Only variables inducing a difference having an absolute value greater than 0.005 are
shown.

Paper Best method AUROC Lift 10% Lift 5%

Coussement et al., 2017 Logistic regression 0.63 2.19 —
De Caigny et al., 2018 Logit Leaf model 0.87 5.34 —
Óskarsdóttir et al., 2018 Similarity forests 0.87 6.05 —
Zhu et al., 2017 C4.5 with UnderBagging 0.80 4.54 —
Mitrović et al., 2018 Random forest 0.74 2.35 —
Idris et al., 2014 Ensemble with mRMR 0.75 — —
Óskarsdóttir et al., 2017 Logistic Regression 0.89 — 6.16
Verbeke et al., 2014 Relational classifier — 3.11 3.92

Our results Easy Ensemble 0.73 3.41 4.68

Table 3.3 – Comparison of our results to other studies in churn prediction.

recall, F-measure and accuracy are thus functions of this threshold, and this does
not allow a direct comparison with these 7 empirical studies. We are left with 8
other studies which use either the lift at different thresholds (most often 10%, also
named top decile lift), the expected maximum profit and the area under the ROC
curve (AUROC). The results of these studies are compiled in table 3.3, along with
our results in the last row.

We consider our results on the SIM only test set, taking the results of one
of the best performing configurations (no variable selection, no difference or ratio
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variables). It is important to notice that the studies mentioned in table 3.3 obviously
do not provide a unique numerical result. In each of these studies, we considered,
whenever possible, the results pertaining to a dataset similar to ours in terms of
churn rate and type of contracts. Also, when multiple methods are compared in
a study, we retained the evaluation measure of the method performing best. The
name of the method retained in each study is given in the second column of the
table.

In terms of area under the ROC curve, we achieve results similar to 2 studies,
both using random forests (the ensemble proposed by Idris and Khan (2014) contains
a random forest, a KNN, and a rotation forest). Also, we perform better than the
logistic regression proposed by Coussement et al. (2017), but the 4 remaining papers
outperform our model by a clear margin. In terms of lift, we outperform the logistic
regression in the first row, the random forest used in Mitrović et al. (2018) and the
combined relational classifier proposed by Verbeke et al. (2014). All other studies
yield a superior lift, both at 5% and 10% threshold.

3.6 Conclusion
We summarize here the main findings of our experiments on churn prediction. All
those conclusions are inevitably strongly related to the limited dataset we considered.
We expect that further validation could help in better supporting such conclusions.
Also, the variable selection performed in these experiments gives a useful, restricted
scope for the causal analysis in the next chapter by discarding irrelevant variables.

• Feature selection does not reduce performance if at least 30 of the most im-
portant variables are selected.

• Adding difference and ratio variables reduces the performance if no feature
selection is conducted beforehand.

• Due to a lucky domain shift, the trained models actually perform better on
the test set than on the validation set.

• Churn is slightly easier to predict in the loyalty dataset, due to the importance
of time-related variables.

• Important variables include non-exhaustively: the tenure, the province, the
tariff plan, the number of calls, and the data usage.

• The tenure and the number of contracts are associated monotonically to the
churn probability

• Variables related to the amount paid by the customer are associated to more
churn when they are increased, but the opposite is not true.



Chapter 4

Causal analysis

4.1 Introduction
In this chapter, the application of causal inference to customer data is explored, in
the hope of shedding light on the reasons for customer churn. A predictive experi-
ment as conducted in the previous chapter indicates which variables are indicative
of a client about to churn, but there is no guarantee that an intervention on any
of these variables will have a positive effect. For example, the number of contracts
registered by a customer has a strong predictive power as shown in figure 3.20. How-
ever, a hypothetical churn retention action that would sell additional contracts will
maybe fail, if satisfied clients are more prone to buy new contracts but not dissatis-
fied ones. In this case, the predictive variable (number of contracts) and the churn
have a common cause (customer satisfaction). Manipulating the number of con-
tracts will therefore have no effect on churn. Different tools are needed to discover
true causal relationships between variables. In this chapter, we focus on three types
of models: causal Bayesian networks, information-theoretic filters, and supervised
causal inference. An overview of state-of-the-art methods for each of these models
is given in section 2.2, but we describe them here in more details.

We begin by introducing Bayesian networks, which are graphical models used
to represent probabilistic dependencies between random variables. They are rep-
resented by a directed acyclic graph (DAG) where the nodes are random variables,
and a joint probability density is assigned to these variables. We will use the terms
nodes and variable interchangeably. In a directed acyclic graph, a node A is a parent
of B if there is a direct edge from A to B, A is an ancestor of B if there is a directed
path from A to B. We can define in a similar way the notions of child, descendant,
and spouse in a directed acyclic graph. Bayesian networks come in a causal variant,
which is defined here (Guyon, Aliferis, et al., 2007).

Definition 1 (Causal Bayesian network). Let X be a set of random variables and
P a joint probability density over X. Let Γ be a DAG in which the vertices are X.
It is required that

(i) for every edge from a node X ∈ X to a node Y ∈ X, X is a direct cause of
Y , and

43
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Invoice

Churn

Data usageAge Location

Figure 4.1 – An example of causal network illustrating the notion of d-separation.
Age and invoice are d-separated given data usage, whereas data usage and location
are no longer d-separated once we know the invoice amount or the churn variable.

(ii) for every node X ∈ X, X is probabilistically independent of all its non-
descendants given its parents, according to P :

X ⊥P (X \Descendents(X))|Parents(X) (4.1)

where Descendents(X) is the set of descendent nodes of X and Parents(X) is
the set of parent nodes of X.

The first condition is required for a Bayesian network to be causal, and the second
condition is called the Markov condition. The tuple (X, P,Γ) is a causal Bayesian
network iff both conditions are satisfied.

We denote independence between two variables X and Y according to the prob-
ability density P as X ⊥P Y . Similarly, the conditional independence between two
variables X and Y given a set of variables Z is written X ⊥P Y |Z.

The notion of d-separation, as introduced by Pearl (e.g. in Pearl, 2002), gives a
graphical criterion to evaluate the conditional dependence between two sets of nodes
entailed by the Markov property. This notion uses the terms chain (a causal pattern
of the form X → Y → Z), fork (X ← Y → Z), and collider (X → Y ← Z).

Definition 2 (d-separation). Let X and Y be two variables in X, and Π an undi-
rected path between X and Y in the DAG Γ. The path Π is blocked by a set of
nodes Z ⊂X \ {X,Y } if either of the two following statements are true:

(i) Π contains a chain I → Z → J or a fork I ← Z → J such that Z is in Z

(ii) Π does not contain a collider I → Z ← J such that Z or any of its descendent
nodes are in Z

If all undirected paths Π between X and Y are blocked by Z, then Z d-separates
X and Y .

Using the notion of d-separation, we define the conditional independence between
two variables X and Y given Z entailed by a graph Γ as X ⊥Γ Y |Z. To illustrate
this notion, consider the figure 4.1. In this fictional example, the churn is caused
solely by the amount to pay on the invoice. This invoice is in turn determined by
the data usage (and indirectly by the age of the customer), and also by the location:
a customer in a less populated area pays more because establishing the connectivity
is more expensive for the operator. In this configuration, the age and the invoice
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are d-separated by the data usage, since knowing the data usage of a client removes
any information the age may bring about the invoice amount. Also, data usage and
location are d-separated given the empty set, since there is a collider between them.
However, if we know the invoice variable, data usage and location are no longer
d-separated, as the knowledge of the invoice allows to explain away one variable
with the other. If the client has a large invoice amount and is living in a populated
area, that must mean that its data usage was probably high. Note that knowing
the churn variable instead of the invoice would have the same effect, since churn is
a direct effect of invoice.

The condition of faithfulness is often set onto a causal Bayesian network:

Definition 3 (Faithfulness). A DAG Γ is faithful to a joint probability density P

iff every dependency entailed by the Markov condition on Γ is also entailed by P .
That is,

∀X,Y ∈X,∀Z ⊂X, X 6⊥Γ Y |Z ⇒ X 6⊥P Y |Z. (4.2)

Both the Markov conditions and the faithfulness conditions ensure that a given
graph and a given probability density represent accurately the same set of dependen-
cies and independencies. When both conditions are met, we write (in)dependence
relations without specifying whether it is entailed by P or Γ. The faithfulness con-
dition, in particular, ensures that the influence of a cause onto an effect by multiple
causal routes does not cancel itself out. To demonstrate a violation of this assump-
tion, assume a gene codes both for the production of a particular protein and for
the suppression of another gene that codes this protein as well. In this case, when
the first gene is removed, the protein is still produced by the other gene, and there-
fore the presence of the first gene seems to be independent of the production of the
protein. The probability density P postulates the independence between the two
variables, whereas the causal structure of the problem indicates a causal link(Hitch-
cock, 1997).

Another important concept in Bayesian networks is the notion of Markov blanket
of a variable. Informally, this is a set of variables that shields a given target variable
from the influence of the rest of the network. This notion is useful, for example, in
feature selection for machine learning. The Markov blanket of a target variable is a
subset that brings the maximum information about the target, among all possible
sets of variables. Adding any other variable will bring some information that is
already contained in other members, or in the interaction thereof, of the Markov
blanket.

Definition 4 (Markov blanket). For a set of random variables X, a subset M ⊂X,
and a variable Y ∈X, M is the Markov blanket of Y iff for any subset V ⊂X, Y
is conditionally independent of V \M given M .

In our case, where causal Bayesian networks are represented by a directed acyclic
graph, and where both the Markov and the faithfulness conditions are met, the
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Figure 4.2 – A causal Bayesian network, with the Markov blanket of Y highlighted
in blue.

Markov blanket of a variable is unique and consists of its direct causes, its direct
effects, and the direct causes of its direct effects. An example is given in figure 4.2.

These definitions lay the theoretical background for graphical causal models,
but methods for inference from observational data still need to be derived. The
methods used in this experiment are described in section 4.4. A common requirement
of some of these methods is an accurate test of statistical independence between
two variables in X. Many statistical independence tests exist, but in our case,
we need an estimator that is able to handle a mix of categorical and continuous
variables. We use the mutual information, which is an information-theoretic measure
of statistical dependency. It is more general than the Pearson or the Spearman
correlation coefficient, as it encompasses any type of dependency, and not only
linear or monotonic relationships. Also, it is defined for any two random variables,
regardless of their type or domain. In the case of two discrete variables X and Y

taking values respectively in X and Y , with a joint probability distribution P (X,Y )

and marginal probability distributions P (X) and P (Y ), the mutual information
between X and Y is defined as (Cover & Thomas, 2012)

I(X,Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x)P (y)

)
(4.3)

= H(X)−H(X|Y ) (4.4)
= H(Y )−H(Y |X) (4.5)
= H(X) +H(Y )−H(X,Y ) (4.6)

where H(X) is the entropy of X and H(X|Y ) is the conditional entropy of X
given Y (Shannon, 1948). The two last equalities indicate that the mutual informa-
tion is a symmetric, positive quantity, and that it can be viewed as the reduction
in uncertainty that a variable brings about the other. A schematic view of these
formulae is given in figure 4.3. In the case of two continuous variables, an analogous
definition exist (Kolmogorov, 1956)
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H(X|Y ) H(Y |X)I(X,Y )H(X) H(Y )

H(X,Y )

Figure 4.3 – Schematic representation of the relationship between entropy, condi-
tional entropy, joint entropy, and mutual information of two discrete random vari-
ables. The blue circle represents H(X) and the orange circle represents H(Y ).

I(X,Y ) =

∫
X

∫
Y
P (x, y) log

(
P (x, y)

P (x)P (y)

)
dx dy (4.7)

= h(X)− h(X|Y ) (4.8)
= h(Y )− h(Y |X) (4.9)
= h(X) + h(Y )− h(X,Y ) (4.10)

where h(X) is the differential entropy of X and h(X|Y ) is the conditional dif-
ferential entropy of X given Y . In the case of two normally distributed variables,
we have

I(X,Y ) = −1

2
log(1− ρ2) (4.11)

where ρ is the Pearson correlation coefficient between X and Y . Even though
the assumption of normal distribution does not hold in general, empirical results
show that it is still a decent estimator for non-linear dependencies (Olsen, Meyer,
& Bontempi, 2008). Finally, the mutual information between a continuous variable
X and a discrete variable Y taking values in a finite set Y can be computed as

I(X,Y ) = h(X)− h(X|Y ) = h(X)−
∑
y∈Y

h(X|Y = y)P (Y = y) (4.12)

which means that the mutual information in the mixed case can be computed
with an estimator of the differential entropy of a continuous variable. Following
the discretization method described in (Olsen et al., 2008), let N be the number of
values sampled independently and identically from X. We divide the domain X of
X into k bins of equal size ∆, and we write nb(i) the number of samples present
in the ith bin, ∀i ∈ {1, . . . , k}. The differential entropy of X is estimated with the
Miller-Madow estimator

ĥ(X) =
k∑

i=1

nb(i)
N

log

(
nb(i)
N

)
+ log∆ +

k − 1

2N
(4.13)
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It follows that we can compute the mutual information in all possible configura-
tions of variable types:

(i) Between two discrete variables, using equation 4.3

(ii) Between a continuous variable X and a discrete variable Y with equation 4.12
and the differential entropy estimator of equation 4.13

(iii) Between two continuous variables assuming normal distributions with equation
4.11

The mutual information can be generalized for any n variables, and is then
named n-way interaction or co-information (A. J. Bell, 2003). A general formula
exists, but we are only interested in the case n = 3 since it is connected with
causal configurations composed of three variables. All causal configurations of three
variables can be easily enumerated, allowing to develop causal discovery algorithms
based solely on the 3-way interaction. In this case, the 3-way interaction (that we
simply name interaction) between three random variables X1, X2, and Y is defined
in (McGill, 1954) as

I(X1, X2, Y ) = I(X1, X2)− I(X1, X2|Y ) (4.14)

where, in the case of a discrete Y taking values in a finite set Y , I(X1, X2|Y )

can be computed as

I(X1, X2|Y ) =
∑
y∈Y

P (Y = y)I(X1, X2|Y = y) (4.15)

A more general definition of conditional mutual information is given in (Cover
& Thomas, 2012). But since we consider a classification problem with Y = {0, 1},
this restricted definition is sufficient for our purposes.

4.2 Scope
In this chapter, the same dataset as in the predictive modeling chapter is used. We
restrict ourselves to SIM only contracts since it is supposed that the causes of churn
are at least partially different between loyalty and SIM only contracts. All 5 months
of data are used. In order to decrease computation time, only the first 30 variables
in the ranking of the random forest trained in chapter 3 are used. Depending on the
algorithm being used, a random subsampling has been applied, also to reach decent
computation times. In all cases, the positive class (churners) is untouched, and a
random subset of the negative class is sampled so that the class ratio is even.

4.3 Prior knowledge of churn
Bayesian reasoning indicates that we should always take into account our prior
knowledge on a problem when considering the outcome of an experiment designed



4.3. PRIOR KNOWLEDGE OF CHURN 49

to test some hypotheses on this problem. An unlikely theory according to our priors
needs strong evidence to be proven true. Ideally, we should assign a probability (in
the Bayesian sense, that is, a degree of belief) to every theory, and calculate the
probability of the experiment results according to each theory. We will obviously
not conduct this procedure formally in the context of this study, but the Bayesian
methodology is nonetheless useful to keep in mind when interpreting the results of
the causal inference experiments. This section describes the prior knowledge we have
on the causes of churn. It is the result of discussions and interviews with the data
science and business intelligence teams at Orange Belgium. This prior knowledge
is highly valuable since it incorporates years of experience in churn prevention and
customer relationship in general. We summarize the main causes of churn in four
different settings.

Bill shock This setting has been already evoked multiple times in chapter 3. It
occurs when a customer has an unusually large service usage, which results in an
important “out of bundle” amount (i.e. the client is charged much more than usual).
This triggers a reaction from the customer inducing an increased risk of churn. This
scenario is well understood and verified in practice. It is believed to be the most
important cause of churn.

Customer dissatisfaction Multiple factors influence customer satisfaction, in-
cluding quality of service and network quality. A customer having numerous cuts
of network connection during phone calls, or unable to use properly Orange online
services, will be more likely to seek better alternatives elsewhere.

Wrong positioning Each customer has different service usage habits. Some peo-
ple make a few minutes of phone calls per month, whereas this can be counted
in hours for others. This is why multiple tariff plans are proposed by the service
provider. However, choosing the right tariff plan is sometimes difficult. On the one
hand, if not enough call time is provisioned, an “out of bundle” amount is likely to
be charged at the end of the month. On the other hand, an expensive tariff plan
results in a high fixed cost for the customer. When the needs of a customer does not
correspond to the chosen tariff plan, we say that the customer is wrongly positioned.
A wrong positioning results in most cases to a higher bill that expected, and is a
significant cause of churn.

Churn due to a move It is common to choose a product bundle from a telecom-
munication company comprising a subscription for mobile phone, landline phone,
television, and internet connection. In this case, the subscription is tied to the par-
ticular place of domicile of the customer. When the client moves to another place,
it is quite common to also change for another telecommunication service provider.
Therefore, this is a significant cause of churn, albeit of a different nature from the
other settings exposed above.
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These different settings are described informally, and their translation to the for-
mal definitions of causality presented in section 4.1 is not straightforward. This
touches upon philosophical debates on the definition of causality, which are well be-
yond the scope of this thesis. More practically, we wish to find a mapping between
the events believed to be causes of churn and specific instantiations of measurable
random variables. In the case of the first setting, we can reasonably assume that
variables measuring the “out of bundle” amount of the customer is a faithful proxy
for bill shock. Similarly, customer satisfaction can be estimated using, for example,
the number of network cuts during phone calls, or the number of calls to the cus-
tomer service. The wrong positioning can also be numerically estimated, given the
tariff plan of the client and its average service usage. The last setting, churn due
to a move, is much more difficult to estimate, as it is not directly related to the
interaction between the client and the telecommunication services.

In the dataset available for this study, the only measured variables that translate
to potential causes of churn are the “out of bundle”, the tariff plan and service usage
(phone calls, messages, mobile data). We have no measure for network quality,
customer satisfaction, or propensity to move in the near future. Also, the wrong
positioning is not explicitly encoded and has to be inferred by the causal inference
model from the average service usage and the current tariff plan.

4.4 Experiments
The overall scheme of this experiment consists of running several causal inference
techniques, which give different types of results in various forms, and extract a
general consensus, if any, in the light of the different assumptions each model put
on the data. Indeed, all causal inference methods are based on different assumptions,
and the ability of a given method to infer causal patterns from observational data
lies upon these assumptions.

More specifically, we use 5 different causal inference algorithms:
• PC

• Grow-shrink (GS)

• Incremental Association Markov Blanket (IAMB)

• Minimum interaction maximum relevance (mIMR)

• D2C

For the first three methods, we use the R package bnlearn (Scutari, 2009) for
independence tests using mutual information and asymptotic χ2 test (Good, 2013).
For mIMR and D2C, we use the R package D2C (Bontempi & Flauder, 2015), along
with another implementation of mIMR using the mutual information estimator given
in section 4.1. The sample size used in the experiment is given after the description
of each algorithm. In all cases, a false positive rate of 0.05 is chosen for statistical
tests of independence.
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PC
Description The PC algorithm (Spirtes & Glymour, 1991) returns the set of di-
rected acyclic graphs that are faithful to a given probability distribution. It is based
on independence tests between two variables, conditioned on a set of other variables.
It uses the notion of d-separation to eliminate or find the direction of putative causal
links. The PC algorithm is given in algorithm 1, where Adjacencies(X) is the set
of nodes that are adjacent to X in the current version of the result Γ. Therefore, it
evolves as Γ is modified in the algorithm. When two directions for a causal link are
faithful, Γ contains an undirected edge to represent the two directions at once. The
result is thus a graph having directed and undirected edges, but which represent
an equivalence class of undirected acyclic graphs. The idea underlying PC is to A)
start with a full graph, B) remove edges using independence tests with conditioning
sets of increasing size, C) orient colliders using the d-separation property, and D)
find remaining orientations using two more rules. The assumptions underlying this
algorithm are

(i) There is no unmeasured confounder

(ii) The statistical tests are correct

(iii) The causal relationships between variables are the same for all samples

(iv) There exists a DAG Γ representing the causal structure that is faithful to the
underlying joint probability density P (definition 3)

If these assumptions hold, then the result of the algorithm is a set of DAGs that
are all faithful to the density probability P . The assumption (iii) is reasonable in
our case, but the three others less so.

Experimental setting The PC algorithm is slow when the number of samples is
large since the whole Bayesian network is inferred. Therefore, we restrict the dataset
to 10,000 samples. The implementation given in the package bnlearn is used. The
results are given under the form of a directed acyclic graph.

Grow-Shrink
Description The GS algorithm (Margaritis & Thrun, 2000) is a Markov Blanket
discovery algorithm efficient even for a large number of variables. It is based on an
estimator that returns a numerical value for the statistical dependency between two
variables, potentially conditioned on a set of other variables. In our case, we use the
mutual information. Consider a target variable Y and a set of predictor variables
X. The GS algorithm constructs the Markov blanket of Y , denoted MB(Y ), in
three phases performed in sequence:

A) All variables X ∈X are ordered in decreasing order according to I(X,Y )
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Algorithm 1 The PC algorithm
A) Let Γ be a complete undirected graph on the set of vertices X.
B) n← 0
repeat

repeat
Select a pair of vertices X and Y such that
• X and Y are adjacent
• there exists a set Z ⊆ Adjacencies(X) \ {Y } that has n elements
• X ⊥ Y |Z.

Remove the edge X—Y from Γ
Add Z to Sepset(X,Y ) and to Sepset(Y,X)

until no X, Y pairs satisfying above conditions can be found
n← n+ 1

until for each pair X and Y , |Adjacencies(X) \ {Y }| < n
C) For all triplets X—Y —Z where there is no edge between X and Z, orient it
as X → Y ← Z if Y is not in Sepset(X,Z)
D)
repeat

Orient all X → Y —Z as X → Y → Z
Orient all X—Y as X → Y if there is a directed path from X to Y

until no more edges can be oriented

B) Each variable X ∈X is added to MB(Y ) iff it is conditionally dependent on Y ,
given MB(Y ). That is, iff I(X,Y |MB(Y )) > 0.

C) Each variable X ∈ MB(Y ) is removed from MB(Y ) iff it is conditionally inde-
pendent of the rest of MB(Y ). That is, iff I(X,Y |MB(Y ) \ {X}) = 0.

The phase A) is a heuristic to speed up the search, however Tsamardinos, Aliferis,
Statnikov, and Statnikov (2003) pointed out that this delays the inclusion of spouses,
since those have small unconditional relevance to Y . Therefore, more false positives
are included before spouses get into MB(Y ).

Experimental setting The entire set of positive samples is used, along with
a subset of the same size of negative samples. The resulting number of samples
cannot be disclosed due to confidentiality reasons, as it would allow inferring the
actual churn rate in the dataset. The GS algorithm has been implemented using the
independence test in the package bnlearn. The results are given as a list of members
of the Markov blanket.

Incremental Association Markov Blanket
Description The IAMB algorithm (Tsamardinos, Aliferis, et al., 2003) is essen-
tially similar to the GS algorithm, but does not include the sorting heuristic as a
first phase:
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A) The variable X ∈X maximizing I(X,Y |MB(Y )) is added to MB(Y ), repeatedly
until all remaining variables are independent of Y given MB(Y ).

B) Each variable X ∈ MB(Y ) is removed from MB(Y ) iff it is conditionally inde-
pendent of the rest of MB(Y ). That is, iff I(X,Y |MB(Y ) \ {X}) = 0.

Experimental setting The experimental setting is the same as for the GS algo-
rithm.

Minimum Interaction Maximum Relevance
Description The mIMR filter (Bontempi & Meyer, 2010) is a feature selection
algorithm that has similarities with the mRMR algorithm (Peng et al., 2005). By
using the interaction instead of the redundancy between the candidate variable and
the set of selected variables, causes and spouses of the target are favored. In order
to select only causes, spouses are eliminated beforehand on the basis of their null
unconditional mutual information with the target. More formally, the main objective
of feature selection is to find a subset X∗ of a set of variables X that maximizes
the mutual information with the target Y :

X∗ = argmax
XS⊆X

I(XS, Y ) (4.16)

Evaluating all possible subsets XS is computationally infeasible, the forward
selection scheme is therefore adopted. It consists in repetitively selecting the variable
X∗

d+1 that bring the most improvement given the set XS containing the d variables
already selected, until a fixed number v of variables is attained. The improvement
is determined in a way that favors direct causes of Y . Consider the interaction
equation 4.14. The interaction I(X1, X2, Y ) can be viewed as the reduction in
statistical dependency between X1 and X2 brought by the knowledge of Y . On
the one hand, a positive interaction occurs in 4 types of causal patterns, shown in
figures 4.4c, d, e and f. On the other hand, a negative interaction occurs only in the
common effect configuration (figure 4.4a) and the spouse configuration (figure 4.4b).
Furthermore, one can differentiate between common effect and spouse configurations
by noticing that a spouse of the target has null unconditional relevance with the
target (a spouse is relevant only when the common effect is known). In practice,
a statistical test is used to restrict the set of considered variables to those having
non-null mutual information with the target, written X+. This leads to the update
criterion of mIMR that is a linear combination of relevance and interaction:

X∗
d+1 = argmax

Xk∈X+\XS

[I(Xk, Y )− I(XS, Xk, Y )] . (4.17)

Using the approximation

I(XS, Xk, Y ) ≈ 1

d

∑
Xi∈XS

I(Xi, Xk, Y ), (4.18)
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Figure 4.4 – Possible causal patterns between two variables X1 and X2 and a target
variable Y having non-null interaction.

the forward step can be written as

X∗
d+1 = argmax

Xk∈X+\XS

[
I(Xk, Y )− 1

d

∑
Xi∈XS

I(Xi, Xk, Y )

]
(4.19)

= argmax
Xk∈X+\XS

[
I(Xk, Y )− 1

d

∑
Xi∈XS

(I(Xi, Xk)− I(Xi, Xk, |Y ))

]
(4.20)

= argmax
Xk∈X+\XS

[
I(Xk, Y ) +

1

d

∑
Xi∈XS

∑
y∈Y

P (Y = y) (I(Xi, Xk, |Y = y)− I(Xi, Xk))

]
(4.21)

where equation 4.20 is derived using equation 4.14 and similarly 4.21 is derived
from 4.15. The first two variables are selected as

X∗
1 , X

∗
2 = argmax

Xi,Xk∈X+

I([Xi, Xk], Y ). (4.22)

The mIMR filter is based on some underlying estimator of mutual information
between two variables, and a statistical test of independence for selecting the set of
unconditionally relevant variables X+.

Experimental setting In this experiment, two implementations are used:
• One using the mutual information estimator described in section 4.1 and the

test of independence in the package bnlearn.

• One assuming normally-distributed continuous variables, allowing to compute
the mutual information (with equation 4.11) and to test for independence
using the Pearson correlation coefficient. Discrete variables are converted to
numerical values using one-hot encoding.
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The drawback of the first method is that the mutual information estimator is
ad-hoc: it assumes a monotonic relationship between two continuous variables but
uses a histogram-based entropy estimator in the mixed case. This may lead to in-
consistencies in the measure of mutual information. On the other hand, the second
method sets the linear assumption on all variables, even on one-hot encoded cate-
gorical variables. For the first implementation, the dataset is restricted to 10,000
samples, due to the computational cost of the entropy estimator. In the second
implementation, 100,000 samples are used. The results are provided as a list of the
first 15 selected variables, accompanied with the gain provided by each variable at
each iteration of the algorithm.

D2C
Description The first three causal inference algorithms used in this section are
solely based on statistical independence tests, and therefore are unable to differenti-
ate between indistinguishable causal patterns, such as the two variables configuration
or the fully-connected three variables configuration. Since the probability density P

is reduced to a set of (in)dependence relations, any fully connected graph is faith-
ful to P in these two cases. Asymmetrical patterns exist however in the structural
nature of the dependencies between two variables and the remaining ones. The
D2C algorithm (Bontempi & Flauder, 2015) is based on the asymmetry of descrip-
tors extracted from the Markov blanket of two causally linked variables. Consider
two random variables X1 and X2 such that X1 is a cause of X2, and their respec-
tive Markov blanket MB(X1) and MB(X2). This setting is pictured in figure 4.5.
We consider only one cause, effect and spouse per Markov blanket for the sake of
the presentation, but the principles generalize obviously to any Markov blanket.
Two assumptions are however made: i) the only path between X1 ∪ MB(X1) and
X2 ∪ MB(X2) is the edge X1 → X2, and ii) X1 and X2 have no common ances-
tor with their respective spouse. Failure to satisfy these conditions is expected to
be compensated for by the predictive model. Even though we cannot distinguish
between causes, effects and spouses among MB(X1) and MB(X2), we can derive
several inequalities using d-separation. Consider the variables M1 and M2, which
are members of respectively MB(X1) and MB(X2), but whose relation to X1 and
X2 is unknown (that is, M1 is either C1, E1 or S1). We have{

I(X1,M2|X2) > I(X2,M1|X1) if M2 = C2

I(X1,M2|X2) = I(X2,M1|X1) otherwise,
(4.23)

since the only collider configuration between one of X1 and X2 and a member
of the Markov blanket of the other variable is X1 → X2 ← C1. By computing a
population of descriptors

D(1, 2) = {I(X1,M2|X2)| ∀M2 ∈ MB(X2)} (4.24)
D(2, 1) = {I(X2,M1|X1)| ∀M1 ∈ MB(X1), }, (4.25)
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Figure 4.5 – Two causally linked variables and their Markov blanket.

equation 4.23 indicates that the distribution of D(1, 2) differs from D(2, 1).
Other similar inequalities are used to compute 2 other population of descriptors.
The rank of each M1 in MB(X2) is also computed, along with the rank of each
M2 in MB(X1). The quartiles of the population of these various descriptors are
computed, along with the mutual information between X1 and X2, and the mutual
information conditioned on MB(X1) or MB(X2). All these quantities are then used
as features on a machine learning algorithm, whose task is to predict the probability
of a causal link between X1 and X2. The default implementation of D2C uses a
random forest classifier.

Experimental setting The D2C model is trained using randomly generated
DAGs, as described in (Bontempi & Flauder, 2015) and implemented in the R
package D2C. We use 50 DAGs having each a number of nodes sampled uniformly
between 10 and 20, and each DAG generated 50 to 200 data samples. The func-
tion underlying the edge between two nodes is randomly chosen to be either linear,
quadratic or a sigmoid. A Gaussian additive noise of standard deviation chosen
randomly from 0.2 to 1 is added to each directed edge. The feature extraction phase
uses the lazy learning approach (Bontempi, Birattari, & Bersini, 1999) to estimate
mutual information, thus avoiding the linear assumption. We assume a Markov
blanket of 4 variables when constructing the asymmetrical features. Given the high
computational cost of feature extraction, 2,000 samples are used from the customer
dataset. The results are provided as the predicted probability for each variable to
be a cause of churn.

4.5 Results
In this section, the colors of the bars in graphs correspond to the variables categories
presented in section 3.1:
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� Subscription

� Calls and messages

� Mobile data usage

� Revenue

� Customer hardware

� Socio-demographic

PC
The output of the PC algorithm is a dense graph linking most of the variables,
but unfortunately, the churn variable is completely disconnected from the rest of
the graph. Note that it also the case for the province, the tariff plan, and other
variables. All of these variables have been ruled out of the Markov blanket of the
churn variable in this algorithm by conditional independence tests.

Grow-Shrink
The Markov blanket output by the GS algorithm contains 21 variables:

• 4 variables related to voice calls (C5, C6, C7, and C8)

• 6 variables related to data usage (U1, U2, U3, U4, U10, and U19)

• 4 variables related to messages (C1, C2, C3, C4)

• “out of bundle” amount

• Age

• Tenure

• Number of contracts

• A socio-demographic variable (D13)

• A hardware-related variable (H15)

• A subscription-related variable (S7)

As explained by Tsamardinos, Aliferis, et al. (2003), the heuristic used in GS
that favors variables having high unconditional relevance to the target increases
the probability of false positive, since spouses of the target are not included in
the beginning. Therefore, indirect causes or effects are included instead. This is
particularly obvious in our case since the 4 variables related to voice calls are highly
correlated, and some of them are known to be causes of the others. The same applies
to the groups of variables related to data usage and messages.
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Incremental Association Markov Blanket
The Markov blanket output by the IAMB algorithm contains 2 variables:

• The current tariff plan

• The previous tariff plan

According to IAMB, the churn is therefore independent of all other variables
when we know the current and the previous tariff plan of the customer. This result
is surprising but is stable for different values of false positive rates: a p-value of
up to 0.2 was considered significant for independence tests, always giving the same
result. It is noticeable that IAMB returns a Markov blanket comprising only cate-
gorical variables, while the GS algorithm gives only numerical variables. While the
conditional independence tests are identical in the two methods, the different order
of tests may have favored one type of variable over the other.

Minimum Interaction Maximum Relevance
Prior to the results of the mIMR algorithm, we show in figures 4.6 and 4.7 the
mutual information and the interaction matrices of the 30 most predictive variables.
These values are computed using our estimator presented in section 4.1. Let Xi and
Xj be two variables in our dataset, and let Y be the churn variable. Figure 4.6
shows the mutual information I(Xi, Xj) in the cell of position (i, j). A line is also
added for the churn variable. On the one hand, one can see that no single variable
seems to have a high mutual information with the churn. This could explain why
the PC and IAMB algorithms fail to find a satisfactory Markov blanket for the churn
variable. On the other hand, 3 clusters of high mutual information can clearly be
noticed, corresponding to the summary of voice calls, data usage and messages over
the last 3 months. Given that these variables do not vary randomly from month to
month, it is expected that they are strongly informative about each other, and even
more about the average of the 3 months.

The matrix in figure 4.7 shows at position (i, j) the interaction between two
variables Xi and Xj and the churn variable Y , that is, I(Xi, Xj, Y ). The row
corresponding to the churn is not relevant in this figure. Recall that the interaction
between two variables and a target is the reduction in statistical dependence that
the knowledge of the target brings:

I(X1, X2, Y ) = I(X1, X2)− I(X1, X2|Y ).

It is also the amount of mutual dependence to the target that cannot be explained
by bivariate interactions:

I(X1, X2, Y ) = I(X1, Y ) + I(X2, Y )− I([X1, X2], Y )

We thus seek couples of variables having a negative mutual information with the
churn, since that means that those variables are complementary. Complementary
variables are more likely to either be in a common effect or spouse configuration
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Figure 4.6 – Mutual information matrix. The color of the cell indicates the statis-
tical dependency between the row and column variables. Clusters of high mutual
information can be observed for calls, data usage, and messages variables. The churn
variable has a very low mutual information with other variables.

(figures 4.4a and b) with the churn. One couple stands out clearly in figure 4.7,
the tenure and the province. The province negatively interacts with most other
variables, meaning that it brings information about the churn only when considering
it conjointly with other variables. The clusters of strongly correlated variables in
figure 4.6 have a near-zero interaction since the knowledge of the churn does not
change their distributions.

Figures 4.8 and 4.9 show the sequence of variables selected by the mIMR al-
gorithm, for both our mutual information estimator (figure 4.8) and the estimator
assuming Gaussian distributions (figure 4.9). Each row corresponds to one iter-
ation of the algorithm. The width of the bar corresponds to the value of the
mIMR criterion at this step of the algorithm, that is, the approximated value of
I(Xk, Y ) − I(XS, Xk, Y ) where Y is the churn variable, Xk is the variable under
consideration and XS is the set of variables selected before Xk (i.e. above Xk on
the plot). The two first variables have no gain since they are directly selected as
the pair of variables having the highest interaction with the target. Unsurprisingly,
the first two variables in figure 4.8 are the tenure and the province (this couple of
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Figure 4.7 – Matrix of interaction with the churn. A large negative value indicates
that the row and column variables bring more information on churn when considered
together than when considered separately. The province variable has high interaction
with most other variables, as well as the tariff plan to a lesser extent.

variable has the highest negative interaction in figure 4.7). Background knowledge,
as well as figure 4.6, indicate that the following selected variables are not redundant
with one another, up to the 9th and 10th rows. At these rows, the two variables
are both related to the data usage. That probably indicates that the relevance term
I(Xk, Y ) is prevailing over the interaction term I(XS, Xk, Y ).

The selected variables in figure 4.9 are mostly similar to those in 4.8, except that
all categorical variables are not in the first ranks. Since those are converted to as
many numerical variables as there are categorical levels, the information is spread
across multiple variables. Moreover, each of these new variables is considered to
be Gaussian distributed, therefore not allowing to estimate optimally the mutual
information. Another important difference between 4.8 and 4.9 is that the age and
number of contracts are prevalent in the latter. The importance of age is most
probably due to the Gaussian assumption, which is verified in this case, allowing
efficient estimation of its mutual information with other variables.
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Figure 4.8 – Ranking of variables selected by mIMR with their respective gains,
using the mutual information estimator of section 4.1. There is no gain for the first
two variables.
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Figure 4.9 – Ranking of variables selected by mIMR with their respective gains, us-
ing one-hot encoding for categorical variables and assuming Gaussian distributions.
There is no gain for the first two variables.



62 CHAPTER 4. CAUSAL ANALYSIS

D16

U2

Province Liege

U3

H10

U1

H13

Tariff plan Panther

Tariff plan Koala

Province Antwerpen

H12

H9

Province Hainaut

H11

Province other

Tariff plan Dolphin

Tariff plan other

Prev tariff plan Koala

D15

Prev tariff plan Dolphin

0.0 0.1 0.2 0.3 0.4 0.5

Probability of being a cause

Figure 4.10 – Probability of causal link predicted by D2C

D2C
The results from the D2C algorithm are shown in figure 4.10. To each variable
correspond a probability of being a cause of churn predicted by the trained random
forest. Since the implementation we use for D2C is designed for numerical variables,
one-hot encoding is used. All the variables present in this plot are related to the tariff
plan, previous tariff plan, province of residence and hardware-related variables. This
is consistent with results of mIMR in figure 4.8, except for the second and last rows,
related to a categorical socio-demographic variable. Mobile data usage variables are
also present and are the only variables related to service usage in this graph.

We do not believe that the socio-demographic variables D15 and D16 have a
causal relationship with churn, and this rank is most probably due to an artifact in
the encoding of variables. Indeed, in the data preparation process, we noticed that
data entries labeled as churners tend to have more often missing values in categorical
variables. This issue was caused by the inclusion in the dataset of customers that
already churned, even though some variables have no longer a valid value for these
customers. The solution was to remove such entries from the dataset, but a related,
unforeseen problem may have persisted for these categorical variables.

4.6 Discussion
The output of the GS and IAMB algorithm correspond to the Markov blanket,
indistinguishably causes, effects and spouses of churn. On the other hand, mIMR
and D2C focus explicitly on direct causes, but a numerical score is provided for each
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variable. A choice of threshold has to be made on which variables we consider to be
predicted as causes by these algorithms.

For the mIMR in figure 4.8, we include all variables up to the 9th and do not
consider relevant the following ones. As discussed earlier, the 9th and 10th variables
are mostly redundant with one another. Therefore, we can assume that at this
threshold, the relevance term is becoming more important than the interaction term,
and the causal property of the mIMR filter is not maintained anymore. In the case
of mIMR with Gaussian assumption, the threshold is fixed at the 7th variable, since
the following variables show a clear and distinct decrease in gain.

As for the output of the D2C algorithm, although there seems to be a large
number of variables, most of them are different one-hot encodings of the same orig-
inal variable. The most probable causes as predicted by D2C are solely the tariff
plan, previous tariff plan, province of residence, data usage, and a hardware-related
variable (H8). It seems reasonable to consider these 5 variables as predicted causes.

We summarize the results of the 5 algorithms (with the two implementations of
mIMR) in table 4.1. For each variable, we indicate by which algorithm this variable
was output, using the thresholds discussed above. There is no clear-cut consensus
on which variables are causes. It is however reasonable to consider the number of
messages and the duration of voice calls as not being inferred causes of churn, since
only the GS algorithm outputs these variables. On the other hand, the tariff plan
and previous tariff plan are given by all algorithms except for PC, GS, and mIMR
with Gaussian assumption. We do not expect a categorical variable to be correctly
predicted as a cause or not using the Gaussian assumption, the theory that the
tariff plan and previous tariff plan are causes of churn are thus consistent with the
observations.

In the absence of a formal procedure to assess these results, we summarize the
results of causal inference from observational data to the following statements:

• The messages, the voice calls, as well as all variables not represented in table
4.1, are considered as most probably not inferred causes of churn.

• The tariff plan and previous tariff plan are considered as most probably in-
ferred causes of churn.

• The inferred causal relationship of other variables in the table 4.1 is undecided.

In the light of our prior knowledge on the causes of churn exposed in section
4.3, we would expect the “out of bundle” variable to stand out more explicitly,
but it is only given by mIMR with Gaussian assumption. However, recall that the
distribution of the “out of bundle” can roughly be modeled as the exponential of
a Gaussian (see figure 3.1). It is thus easy to understand why the other inference
methods fail to report the causal link to the churn expected by our priors, due to the
different estimators of mutual information. If it is true that the bill shock is a true
cause of churn, then the results we observe in table 4.1 are not extraordinary. In
other words, the credence in this theory is slightly, but not significantly, undermined.
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PC GS IAMB mIMR
1

mIMR
2

D2C

Tenure 5 4 5 4 4 5

H14 5 4 5 4 4 5

D13 5 4 5 4 4 5

Data usage 5 4 5 4 5 4

Tariff plan 5 5 4 4 5 4

Previous tariff plan 5 5 4 4 5 4

Out of bundle 5 4 5 5 4 5

Nunber of contracts 5 4 5 5 4 5

S7 5 4 5 4 5 5

H8 5 5 5 4 5 4

Province 5 5 5 4 5 4

Age 5 5 5 5 4 5

R14 5 5 5 5 4 5

Messages 5 4 5 5 5 5

Voice calls 5 4 5 5 5 5

Table 4.1 – Summary of the results of causal analysis. A green arrow indicates which
variables are output by each algorithm. The output is the Markov blanket for PC,
GS and IAMB, and direct causes for mIMR and D2C.

Two of the other causes of churn according to our prior knowledge are customer
satisfaction and churn due to a move. As explained in section 4.3, none of the
measured variables are direct proxies for these two putative explanations of churn.
The interaction of variables present in table 4.1 might be the most direct display
of the missing causal proxies. This would also explain the presence of variables
seemingly unrelated to our prior knowledge. However, this hypothesis is somewhat
far-fetched and conforming to the faithfulness assumption by engineering relevant
variables would be much more precise and productive. Such missing variables could
be, for example, the number of calls to the customer service, a measure of the
network quality, the number of network cuts during a call, and so on. Adding these
variables would reduce latent confounding if the underlying causal hypothesis are
actually true.

The last of the four expected causes of churn correspond to a wrong positioning
of the customer’s tariff plan. This cause is supported by the results in a more
obvious way. The tariff plan and previous tariff plan are reported as causes of churn
by D2C and mIMR, and is also considered part of the Markov blanket by IAMB.
This indicates that the wrong positioning theory is not unlikely. However, adding a
variable that indicates a wrong positioning would be a stronger, more direct way of
verifying this hypothesis.

Given the prior knowledge of churn presented in section 4.3, the mIMR 1 and
D2C algorithms seem to better infer relevant variables as direct causes. Indeed, the
bill shock and the wrong positioning imply that the “out of bundle”, the tariff plan
and the data usage are likely causes of churn. The two latter are output by mIMR 1
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and D2C, whereas mIMR2 outputs the “out of bundle”. A model similar to mIMR1
or D2C, but able to correctly handle variables with an exponential distribution such
as the “out of bundle”, would be ideal.

Finally, it is important to consider that these results may suffer from sampling
bias. Given that we use a crude random undersampling technique, some causal
patterns in the discarded positive samples may be under-represented in the resulting
training set. This is especially the case for the PC algorithm (using 10,000 samples),
the first implementation of mIMR (10,000 samples), and D2C (2,000 samples). And
even though the remaining algorithms use far more samples, none of them are able
to actually take into account the entire set of non-churners. Furthermore, we have
no theoretical guarantee that an even class ratio is best for inferring causal patterns.
Reducing sampling bias in causal analysis requires the conception of new techniques
that are outside the scope of this thesis.





Chapter 5

Conclusion

5.1 Churn prediction
We summarize in this section the main results of the experiments on churn predic-
tion. The numerical results are reproduced in table 5.1. We observe that feature
selection does not reduce performance if at least 30 of the most important variables
are selected. Also, adding difference and ratio variables reduces the performance
if no feature selection is conducted beforehand. Due to non-stationarity over the
course of the 5 months of data, the trained models actually perform better on the
test set than on the validation set. Principal component analysis indicates that in
the test set (i.e. the last month of data) the churner population displays a larger
magnitude of variations than in previous months of data. Regarding the type of
contracts, churn is slightly easier to predict in the loyalty dataset than SIM only,
due to the importance of time-related variables. Indeed, the churn is significantly
higher at the end of the mandatory period of a loyalty contract, facilitating the
prediction process. Irrespective of the contract type, important variables include,
non-exhaustively: the tenure, the province, the tariff plan, the number of calls,
and the data usage. On the one hand, the tenure and the number of contracts are
observed to be monotonically associated with the churn probability. On the other
hand, variables related to the amount paid by the customer are associated with more
churn when they are increased, but the opposite is not true.

5.2 Causal analysis
The 5 different models used for causal analysis display different results. The PC
algorithm shows no association between churn and the other variables. Of the two
Markov blanket inference algorithms, GS algorithm provides a large Markov blanket
for the churn variable, while the output of IAMB consists solely of the tariff plan
and the previous tariff plan. The first implementation of mIMR, using a different
mutual information estimator for each type of variable, infers mostly categorical
variables as causes of churn. The D2C algorithm also returns categorical variables
as likely causes. The second implementation of mIMR, by considering all variables as

67
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SIM only SIM only ∆ Loyalty
20 30 All 20 30 All 20 30 All

AUROC 0.66 0.73 0.73 0.72 0.73 0.69 0.74 0.76 0.76
AUPRC 0.05 0.10 0.10 0.10 0.10 0.08 0.15 0.19 0.18
Lift at 10% 2.25 3.34 3.41 3.27 3.42 3.03 2.96 3.40 3.30
Lift at 5% 2.64 4.49 4.68 4.48 4.67 4.09 3.51 4.22 4.02
Lift at 1% 4.29 9.20 9.53 10.09 9.95 7.67 4.66 6.65 6.16

Table 5.1 – Summary of the results of prediction experiments on the test set. Highest
values for each type of contract and for each evaluation measure are underlined for
the test set.

continuous and Gaussian-distributed, selects only numerical variables as output. All
these results differ from each other, but this is partly due to the different assumptions
on the variable distributions laid by each of these methods. By considering prior
knowledge on the causes of churn, we can conclude that the bill shock and the wrong
positioning are likely hypotheses of churn. These two explanations, however, do not
explain fully the results we obtain, and further investigations are needed to interpret
and understand the inferred causal link between churn and other variables.

5.3 Internal validity
Internal validity refers to the confidence we can put into our results. More precisely,
it represents the extent to which our results may be warranted, due to systematic
errors. We list here threats to internal validity.

• The numerical implementation of causal inference methods relies on assump-
tions on the distribution of variables that do not always hold for our dataset.
In particular, the mutual information between continuous variables is based
on the linear assumption, whereas some variables are inherently exponentially
distributed.

• Latent confounding is probably present in the dataset since it was not designed
to perform causal analysis. In particular, we believe that variables representing
customer satisfaction (e.g. number of calls to the customer service), network
quality (e.g. number of network cuts during a call), and wrong positioning
would greatly help in reducing confounding.

• The training phase of D2C is based on synthetic causal graphs, and we did not
investigate alternative options for this phase. It is possible to create graphs
that resemble more the data at hand, therefore reducing bias.

• In the causal inference experiments, undersampling with even class balancing
is used to reduce computational load. When the number of selected samples is
low, we may miss causal results not represented in the sample, or infer spurious
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ones. Even in the case of the IAMB and GS algorithms that use the entire set
of churners, the majority of non-churner instances are discarded. This causes
sampling bias, and we have no theoretical nor empirical guarantees that the
methods we used are optimal in this regard.

• The dataset used in this study was created recently. Some problems occurred
during the coding phase, leading to multiple iterations of the computation of
the results. While all issues known to us have been solved in the dataset, some
may have remained unnoticed.

• Not all parameters of the experimental setting for churn prediction have been
assessed. In particular, we considered only three number of selected variables
(20, 30 or all), and one ratio for class balancing (1 to 1). We thus have limited
guarantees on the optimality of the experimental setting.

5.4 External validity
External validity is the extent to which our results can be generalized to other
contexts. We list here threats to external validity.

• We use a dataset provided by Orange Belgium, which cannot be disclosed for
confidential reasons. This is an obvious limit to the reproducibility, since it is
impossible to verify our results using the same data.

• We can disclose the name of only a limited number of variables. Our conclu-
sions on the impact of variables on churn are thus inherently limited to these
variables.

• We do not use the maximum profit criterion, which is used in most recent
studies on churn prediction. Although this requires some time investment to
evaluate the relevant parameters, using this evaluation measure would improve
our ability to compare our results to other studies.

• The principal component analysis, as well as the results on the test set, hints
on the non-stationarity of the churner class. Our results pertain to 5 months
in the year 2018, and our conclusions on variable importance and causality
may less relevant today.

5.5 Added value for Orange
This thesis, conducted in collaboration with Orange, was also beneficial for them.
The most obvious added value is that all conclusions we have drawn from chapter
3 and 4 can directly be used to perform better churn prevention in production.
This thesis displays an analysis work that would be difficult to perform for a data
scientist at Orange due to time constraints. Also, this work is the start of a scientific
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collaboration between the Machine Learning Group from ULB and Orange Belgium.
Future work is planned on causal inference applied to churn prevention, as presented
in the next section. From a more practical point of view, the dataset used in this
study has never been used before and this thesis showed that the variables included
in this new dataset have a strong predictive power. Also, our code makes use of
some R functions implemented originally for production models. We were thus able
to assess the robustness and quality of these functions.

5.6 Future work
The limitations of this thesis have been discussed in sections 5.3 and 5.4. Some of
them suggest improvements that can lead to more thorough and unbiased conclu-
sions on churn prediction. In particular, we did not investigate the use of different
prediction models or hyper-parameters. We believe that the prediction performance
can be further improved through the exploration of alternative and optimized mod-
els, such as gradient boosting, support vector machine or others.

The evaluation of churn prediction models is based on the precision on a small
subset of the test set (e.g. the lift at 5%). A possible extension of our Easy En-
semble model could consist in weighting each model based on the false positive rate
calculated on the leftover portion of the training set. This procedure would favor
models being less prone to consider non-churners as churners on unseen data.

A funding request has been introduced to the Innoviris organism for an “Applied
PhD” program. This program consists in funding for doctoral research with an
industrial partner, Orange in our case. The aim of this Ph.D. is to take further
the work of this master thesis by conducting a more thorough evaluation of churn
prediction, developing data visualization and understanding tools, and performing a
more extensive causal inference research. In particular, the retention campaigns as
they are conducted at Orange will be used as a way of verifying causal hypotheses,
which is a rather unique opportunity in causal inference research. If the funding
is granted, this Ph.D. will span on 4 years. A schematic overview of the research
process is pictured in figure 5.1. The first year will be dedicated to churn prediction
much like the third chapter of this master thesis, and the remaining 3 years will be
dedicated to causal inference. At first, causal analysis from observational data will
be used, as in the fourth chapter of this master thesis. Then, retention campaigns
will be used to verify and define more precisely causal hypotheses formed from
previous analyses. Predictions models will indicate on which customer the retention
campaign should be focused.

5.7 Conclusion
We approached the churn prediction problem in the telecommunication industry
with Orange Belgium customer data. A descriptive analysis of the dataset has been
conducted, showing the non-linearity of variables, large overlap between churners
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Figure 5.1 – Closed-loop validation process planned for the applied Ph.D. project.

and non-churners, non-stationarity and class imbalance. Predictive modeling of
churn was achieved with a random forest classifier and the Easy Ensemble algorithm.
In a series of experiments on churn prediction, we assessed the impact of variable
selection, type of contract and use of engineered features. The results show that
variable selection helps reducing computation time, but can decrease performance.
Also, the addition of features consisting in the difference and the ratio of numerical
variable seems to reduce the performance. The directionality of the impact of vari-
ables on churn is estimated through a sensitivity analysis. This shows that some
variables are associated with the churn probability in a non-monotonic way. We ex-
plored the application of causal inference from observational data. More specifically,
we applied 5 different causal inference methods, namely PC, Grow-Shrink (GS), In-
cremental Association Markov Blanket (IAMB), minimum Interaction Maximum
Relevance (mRMR), and D2C. The results of these algorithms are varied and are
partly consistent with prior knowledge of the causes of churn. This research high-
lights the difficulty of carrying out causal inference in a realistic setting, due to the
large variety of variable types and distributions.
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