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The ladder in the cover illustration represents Pearl’s causal hierarchy, described in
Section 2.2.1. The shadow of the ladder symbolizes the data as the only source of infor-
mation available to us, which is a deformed representation of the reality of the world.
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Summary

Customer churn is an important concern for large companies, especially in the
telecommunications sector. Customer retention campaigns are often used to mit-
igate churn, but targeting the right customers based on their historical profiles
presents an important challenge. Companies usually have recourse to two data-
driven approaches: churn prediction and uplift modeling. In churn prediction,
customers are selected on the basis of their propensity to churn in the near fu-
ture. In uplift modeling, only customers who react positively to the campaign
are considered. Uplift modeling is used in various other domains, such as market-
ing, healthcare, and finance. Despite the theoretical appeal of uplift modeling, its
added value with respect to conventional machine learning approaches has rarely
been quantified in the literature.

This doctoral thesis is the result of a collaborative research project between
the Machine Learning Group (ULB) and Orange Belgium, funded by Innoviris.
This collaboration offers a unique research opportunity to assess the added value
of causal-oriented strategies to address customer churn in the telecommunication
sector. Following the introduction, we give the necessary background in proba-
bility theory, causality theory, and machine learning, and we describe the state of
the art in uplift modeling and counterfactual identification. Then, we present the
contributions of this thesis:

• An empirical comparison of various predictive and causal models for select-
ing customers in churn prevention campaigns. We perform several bench-
marks of different state-of-the-art approaches on real-world datasets and in
live campaigns with our industrial partner, we propose a new approach that
exploits domain knowledge to improve predictions, and we make available
the first public churn dataset for uplift modeling, whose unique characteris-
tics make it more challenging than the few other public uplift datasets.

• Counterfactual identification allows one to classify the different behaviors
of customers in response to a marketing incentive. This can be used to es-
tablish profiles of customers sensitive to the campaign, and subsequently
improve marketing operations. We derive novel bounds and point estima-
tors on the probability of counterfactual statements based on uplift models.

• A comprehensive comparison of predictive and uplift modeling, starting
from firm theoretical foundations and highlighting the parameters that in-
fluence the performance of both approaches. In particular, we provide a new
formulation of the measure of profit, a formal proof of the convergence of
the uplift curve to the measure of profit, and an illustration, through simula-
tions, of the conditions under which predictive approaches still outperform
uplift modeling.

Our theoretical and empirical assessments of uplift modeling suggest that it often
fails to deliver the anticipated advantages over predictive modeling, especially in
scenarios such as customer churnwithin the telecom sector, characterized by class
imbalance, limited separability, and cost-benefit considerations. These results are
broadly aligned with the practical experience of our industrial partner and with
the existing scientific literature. Our counterfactual probability estimators allow
us to characterize customers at a level inaccessible to conventional predictivemod-
eling, revealing new insights on the behavior and preferences of customers.
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Résumé

L’attrition de la clientèle est une préoccupation importante pour de nombreuses
entreprises, notamment dans le secteur des télécommunications. Des campagnes
de fidélisation sont souvent utilisées pour réduire le taux de désabonnement, mais
cibler les bons clients en fonction de leur profil représente un défi majeur. Les
entreprises ont généralement recours à l’une de deux approches : la prédiction
de churn (attrition) et la modélisation de l’uplift. Dans la prédiction de churn,
les clients sont sélectionnés sur la base de leur propension estimée à se désabon-
ner dans un avenir proche. Dans la modélisation de l’uplift, seuls les clients qui
réagissent positivement à la campagne sont pris en compte. Les prédictions de
ces deux approches sont basées sur les caractéristiques des clients. La modélisa-
tion de l’uplift est aussi utilisée dans d’autres domaines tels que le marketing, la
médecine et la finance. Malgré son attrait théorique, la valeur ajoutée de la mod-
élisation de l’uplift par rapport à l’approche plus conventionnelle de prédiction de
churn a rarement été quantifiée dans la littérature.

Cette thèse doctorale est le résultat d’un projet de recherche collaborative
entre le Machine Learning Group (ULB) et Orange Belgique, financé par Innoviris.
Cette collaboration offre une opportunité unique pour évaluer la valeur ajoutée
de stratégies causales pour prévenir l’attrition de la clientèle dans le secteur des
télécommunications. Après l’introduction, nous présentons les base théoriques
nécessaires en théorie des probabilités, théorie de la causalité et apprentissage
automatique, et nous décrivons l’état de l’art enmatière demodélisation de l’uplift
et d’identification contrefactuelle. Nous présentons ensuite les contributions de
cette thèse :

• Une comparaison empirique de divers modèles prédictifs et causaux pour la
sélection des clients dans les campagnes de prévention du désabonnement.
Nous comparons différentes approches de pointe sur des jeux de données
réels et dans des campagnes de rétention avec notre partenaire industriel,
nous proposons une nouvelle approche qui exploite la connaissance du do-
maine pour améliorer les prédictions, et nous rendons public un jeu de
données de churn pour la modélisation de l’uplift, dont les caractéristiques
uniques le rendent plus difficile que les quelques autres jeux de données
d’uplift publics.

• L’identification contrefactuelle permet de classer les différents comporte-
ments des clients en réponse à une incitation marketing. Elle peut être
utilisée pour établir des profils de clients réagissant positivement à la cam-
pagne et, par la suite, améliorer les opérations de marketing. Nous dérivons
de nouvelles bornes et plusieurs estimateurs ponctuels de la probabilité de
propositions contrefactuelles basées sur des modèles de l’uplift.

• Une comparaison de l’approche prédictive et de la modélisation de l’uplift
à partir de fondements théoriques, mettant en évidence les paramètres in-
fluençant la performance des deux approches. En particulier, nous donnons
une nouvelle formulation de la mesure de profit, une preuve formelle de la
convergence de la courbe d’uplift vers la mesure de profit, et une illustra-
tion, par des simulations, des conditions dans lesquelles l’approche prédic-
tive reste plus performante que la modélisation de l’uplift.

Nos évaluations théoriques et empiriques de la modélisation de l’uplift suggèrent
que cette dernière n’apporte souvent pas les avantages escomptés par rapport à
la modélisation prédictive, en particulier dans des scénarios tels que la prédiction
d’attrition de clientèle dans le secteur des télécommunications, caractérisée par
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un déséquilibre entre les classes, une séparabilité des classes limitée, et des consid-
érations de coût-bénéfice. Ces résultats sont largement conformes à l’expérience
pratique de notre partenaire industriel et à la littérature scientifique existante.
Nos estimateurs de probabilités contrefactuelles nous permettent de caractériser
les clients à un niveau inaccessible à la modélisation prédictive conventionnelle,
révélant de nouvelles perspectives sur le comportement et les préférences des
clients.
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Part I

Overview

Anything that happens, happens.
Anything that, in happening, causes something else to
happen, causes something else to happen.
Anything that, in happening, causes itself to happen
again, happens again.
It doesn’t necessarily do it in chronological order,
though.

Mostly Harmless, Douglas Adams





1
Introduction

Machine learning is reshaping the contemporary technological landscape. It enables
systems to learn and improve from data without explicit programming. The rapidly ad-
vancing capabilities of machine learning systems not only capture attention, but also
drive innovation, spark discussions, and change the way we interact with technology.
Larger and more complex models, fueled by increased computational power and vast
datasets, have accomplished unprecedented achievements, notably in the processing
and generation of text, images, and videos. State-of-the-art large language models con-
tain more than a hundred billion parameters (Brown et al., 2020), allowing them to
comprehend and generate human-like text on a wide range of topics. Generative mod-
els have demonstrated astonishing proficiency in creating realistic images and videos
(Ramesh et al., 2021).

While these two applications have received a lot of media attention in recent years,
machine learning is used in a much wider range of domains, such as healthcare, con-
tent recommendation, online advertisement, energy management, fraud detection, sci-
entific discovery, etc. Patient diagnosis can be improved by leveraging large medical
databases and electronic medical records with machine learning (Mintz and Brodie,
2019). Social media, e-commerce, and entertainment websites use recommender sys-
tems to help the user find new and relevant items (Portugal, Alencar, and Cowan, 2018).
Current power systems are using machine learning to address new issues such as dy-
namic resource allocation and incorporating renewable energy sources and large-scale
real-time sensor data (Ibrahim, Dong, and Yang, 2020).

These recent advances in machine learning are made possible by increased compu-
tational power and the development of new learning algorithms, but also, and more
crucially, by the increasing pervasiveness of data in various sectors. We are now living
in the so-called big data era. More and more systems generate data, such as sensors on
various devices, social media interactions, online transactions, and digital communica-
tions. This surge in data production has reached unprecedented scales, as shown in
Fig. 1.1, and is often characterized by the three Vs: volume, velocity, and variety. The
sheer volume of data is massive, generated at an accelerating pace (velocity), and ex-
hibits diverse formats and structures (variety). This abundance of data is a goldmine for
machine learning algorithms, providing the rawmaterial for training and refining mod-
els to extract meaningful insights, make predictions, and automate decision-making
processes across diverse domains.

3



1. Introduction

2010 2012 2014 2016 2018 2020 2022 2024 2026
0

50

100

150

Year

A
m
ou

nt
of

da
ta

(Z
B)

Figure 1.1 Amount of data data captured, created, and replicated worldwide, in
zettabytes (1 ZB = 1 trillion GB = 1021 bytes). Values after 2018 are estimated by ex-
trapolation. Source: Data Age 2025, sponsored by Seagate with data from IDC Global
DataSphere.

However, traditional machine learning faces significant challenges when dealing
with big data, primarily due to the need for distributed computation. As datasets grow
in size, the computational demands increase, often surpassing the capabilities of a sin-
gle machine. Distributing computations across multiple machines becomes essential,
introducing complexities related to communication, synchronization, and load balanc-
ing.

Another issue faced by machine learning in the big data era is that they often oper-
ate in the realm of association rather than causation. Although associations can reveal
intricate patterns and relationships, they may not necessarily represent true cause-and-
effect dynamics. Understanding causality is essential for informed decision-making,
understanding and justifying predictions, and, more broadly, making intuitive sense of
the world. There is a need to develop methodologies and models that go beyond mere
correlations, enabling the extraction of causal insights from large datasets.

1.1 Machine learning in business analytics

The development of machine learning has led to a significant shift in business practices,
with the integration of artificial intelligence becoming commonplace amongmost large
companies. It empowers organizations to extract valuable insights, predict trends, and
optimize various processes. For example, financial companies can detect fraudulent be-
havior amongmillions of credit card transactions (Dal Pozzolo, Caelen, Le Borgne, et al.,
2014), and telecom companies can predict which customers are likely to churn, that is,
to stop their subscription (Jain, Khunteta, and Srivastava, 2021). However, these tasks
have characteristics quite different from the assumptions underlying the most common
machine learning models. For example, there are much fewer fraudulent transactions
than genuine transactions. This characteristic is called class imbalance. Although it is
desirable from a customer and business perspective, it poses a significant challenge for
machine learning algorithms, which often operate optimally under the assumption of
a balanced dataset. The inherent class imbalance in such tasks can lead to biased mod-
els that prioritize accuracy but may struggle to identify the minority class. In some
settings, the data labels (i.e., fraudulent vs. genuine, or churner vs. non-churner) may
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Figure 1.2 The number of math doctorates awarded in the US correlates with the quan-
tity of uranium stored in US electric plants. Sources: Fiegener (2010) and United States
Census Bureau (2011), idea from tylervigen.com.

not even be available, and specific strategies must be adopted, such as transfer learning
(Lebichot et al., 2021).

Another defining characteristic of such settings in business application is the in-
herent difficulty in determining the outcome of interest from the available data. This
is called low class separability. Customer behavior is influenced by a large number of
factors, most of which cannot be measured or influenced. Customers might decide to
churn when they move to a new place, or when they hear about another company
through advertisements. New privacy policies restrict the scope of data collection and
storage permissible for companies and, as a result, machine learning models which
predict customer behavior must deal with significant uncertainty.

1.2 The limits of predictive analytics

The belief that sheer volume of data and powerful machine learning models always
lead to meaningful insights can have unexpected and disappointing results. As the
adage says, “correlation does not imply causation”. With a significant amount of data,
spurious correlations will most certainly emerge, linking variables that are causally
unrelated. This is demonstrated in Fig. 1.2, where we can observe a striking correlation
between the number of maths doctorates awarded in the US and the total quantity of
uranium stored in US power plants between 1996 and 2008. This example comes from
Tyler Vigen, who listed several other spurious correlations on his website.1 This clearly
demonstrates that detecting an association2 between events is never sufficient to prove
the existence of a causal link between these events.

Despite this fundamental limitation, the achievements of machine learning in de-
tecting subtle patterns in large datasets has led the data science community to develop
even larger and more data-intensive algorithms, without attempting to validate the
causal nature of the associations exploited by these models. Judea Pearl, who devel-
oped the theory of causality based on structural models, writes:

1https://tylervigen.com/spurious-correlations, last accessed 2023-12-12.
2The word correlation refers to a linear relationship between variables, whereas association refers to

any kind of relationship between variables, linear or otherwise.

5

https://tylervigen.com/spurious-correlations
https://tylervigen.com/spurious-correlations


1. Introduction

Figure 1.3 A deer swimming in a lake. An image recognition model based on spurious
associations might classify it as a sea animal. Image by Misserion on Flickr, under the
CC BY-2.0 license.

Machine learning as it is currently practiced cannot yield the kind of un-
derstanding that intelligent decision making requires.

Data versus Science: Contesting the Soul of Data-Science, Pearl (2020)

This oversight may be harmless for some tasks. For example, a model classifying im-
ages of deer and dolphins might predict “dolphin” if the background is blue water, and
“deer” if the background contains trees, without even taking into account the visual
characteristics of the animal. If only the model accuracy is considered, this approach
might be sufficient. However, Ming, Yin, and Yixuan Li (2022) show that the validity of
such a model is restricted to the specific distribution represented by the training set; a
deer swimming in a lake (Fig. 1.3) might be classified as “dolphin” with a high degree of
confidence. In the majority of real-world problems, a high accuracy for in-distribution
samples (that is, samples coming from a distribution similar to that of the training set)
is not sufficient.

This issue can be avoided by imposing an inductive bias during the learning phase.
In the example of animal picture classification, this might consist in ensuring that the
predictions are based on the visual characteristics of the animal rather than on the back-
ground. More generally, an inductive bias restricts the space of possible functions that
a model can explore in order to accomplish its objective. This is a critical element in
settings where machine learning models are used to make decisions with real-world
consequences, such as granting loans or evaluating criminal offenses (Chakraborty,
Majumder, and Menzies, 2021). Careless modeling has been shown to be biased with
respect to protected individual characteristics such as gender and race (Buolamwini and
Gebru, 2018). Causality theory provides essential tools to formalize the notions of gen-
eralization, bias, and fairness in the context of automated decision-making (Jalaldoust
and Bareinboim, 2023; Plečko and Bareinboim, 2022).

Counterfactual reasoning is another facet of causal analysis, and refers to potential
events in scenarios that contradict the observed facts. An example of a counterfactual
question is “Would I still have a headache if I did not take this pill?” Counterfactual
statements are used in a variety of applications, such as articulating the notion of fair-
ness (as discussed above), finding which patient will benefit from a given treatment, or
finding the right customers to call in phone marketing campaigns. Counterfactual rea-
soning represents the highest of the three layers of Pearl’s causal hierarchy, described
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Figure 1.4 Number ofmobile cellular subscriptionsworldwide per year, per 100 people.
Source: International Telecommunication Union (ITU)World Telecommunication / ICT
Indicators Database, under the CC BY-4.0 license.

in detail in Section 2.2.1, the first and second layers representing, respectively, observa-
tion (e.g., I see that people who take the pill do not have a headache) and interventions
(e.g., when I give a pill to someone, their headache diminishes). Although counterfac-
tual reasoning permeates our intuition of causality, its mathematical definition is not
trivial. Differentiating the three layers of this hierarchy represents one of the biggest
achievements of causality theory (Bareinboim et al., 2020).

Generally, causal analysis aims to either infer the causal mechanisms underlying
the observed data or to inform other systems (such as machine learning models) about
these mechanisms. The literature on inferring causal mechanisms can be further di-
vided into two subfields: causal discovery and causal inference. Causal discovery is
concerned with determining the cause-and-effect relationships between variables and,
as such, provides general insights about the system under study. Causal inference es-
timates the magnitude of the effect of one variable on another, given that we have
established their causal relationship. This represents a more fine-grained knowledge
of the system. In this thesis, we will focus on causal inference, more specifically, on
the effect of a direct marketing action on the propensity of a customer to churn in the
telecommunication industry.

1.3 Customer churn in telecom

Telecom companies, operating in a highly competitive and saturated market, need to
develop innovative strategies to maintain a competitive edge. The global number of
mobile phone users has consistently risen since the early 21st century, reaching 8.6
billion mobile phone subscriptions worldwide in 2022. The number of subscriptions
to mobile services has exceeded the global population, as shown in Fig. 1.4. As high-
lighted by Jain, Khunteta, and Srivastava (2021), it is more expensive to acquire new
customers than retaining existing ones. Consequently, companies have transitioned
from a sales-oriented to a customer-oriented marketing approach. By fostering cus-
tomer relationships grounded in trust and commitment, telecom companies can miti-
gate incentives for client churn, thereby enhancing benefits through subsequent cus-
tomer lifetime value.

One of the various marketing processes used by telecom companies to improve
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customer relationships is to conduct retention campaigns. This traditionally consists
in selecting clients according to some simple statistical criteria and offering them a
promotion or advantage. Typical promotions include a reduced invoice, free calls or
SMS, or increased data limits. However, due to the simple nature of this statistical
analysis, it is plausible that the customers thus reached might never have planned to
churn in the first place. Although this is not an issue for the customer, it would be far
more beneficial for the telecommunication company to contact only risky customers,
to ensure that efforts are focused on customers who would otherwise churn if no action
were taken. The problem of detecting potential churn can be addressed with machine
learning, by collecting data about customers and using this information to infer typical
patterns exhibited by risky clients. Today, most major telecommunication companies
adopt this data-driven approach, and a large body of literature is devoted to customer
churn prediction with machine learning (Idris and Khan, 2014; Mitrović et al., 2018;
Óskarsdóttir, Bravo, et al., 2017; Óskarsdóttir, Van Calster, et al., 2018; Verbeke, Martens,
and Baesens, 2014; Zhu, Baesens, and Broucke, 2017).

This thesis is the result of a research collaboration with Orange Belgium, a major
telecommunication company in Belgium. As such, we focus on the issue of customer
churn from the perspective of Orange Belgium. The company’s experts categorize the
reasons for customer churn into four categories.

Bill shock This occurs when a customer has an unusually large service usage, which
results in an important “out-of-bundle” amount (i.e., the client is charged much
more than usual), itself leading some customer to churn. This scenario is well
understood and verified in practice. It is believed to be the most important cause
of churn. Retention campaigns may even focus exclusively on this category by
filtering out customers with a low out-of-bundle amount.

Customer dissatisfaction Multiple factors can influence customer satisfaction, in-
cluding service quality and network quality. A customer who has numerous con-
nection outages during phone calls or is unable to properly use online services
will be more likely to look for other service providers.

Wrong positioning Choosing the right tariff plan suited to one’s service usage habits
is sometimes difficult. On the one hand, if not enough call time is provisioned, an
“out-of-bundle” amount is likely to be charged at the end of the month. On the
other hand, an expensive tariff plan results in a high fixed cost for the customer.
When the needs of a customer do not correspond to the chosen tariff plan, we
say that the customer is wrongly positioned. Wrong positioning results in most
cases in a higher bill than expected and is a significant cause of churn.

Churn due to a move Subscriptions are often sold in bundles, comprising a mobile
phone subscription, a landline phone, a television subscription, and an internet
connection. In this case, the subscription is tied to the address of the customer.
When the client moves to another place, it is quite common for them to also
change to another telecommunication service provider. Therefore, this is a sig-
nificant cause of churn, albeit of a different nature from the other scenarios dis-
cussed above.

The pipeline for a typical customer retention campaign is shown in Figure 1.5. First,
a predictive model is trained on historical data from previous campaigns to predict
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Figure 1.5 Overview of the pipeline for customer retention. Icons by eucalyp on icon-
finder.com, licensed under CC BY 3.0, adapted for style.

which customers churned by detecting association patterns between customer char-
acteristics and the churn outcome. Then, this model predicts a score for each of the
current customers and ranks them accordingly. The list of customers with the highest
scores is randomly divided into a target group and a control group, and the target group
is sent to a call center. The call center contacts each of them individually and the reac-
tion of the customer is recorded and added to the historical data set for training future
models. The control group is used as a baseline to measure the effect of the campaign.
If the proportion of customers who subsequently churned is significantly lower in the
target group than in the control group, we can assume that the campaign successfully
convinced some customers to stay.

The data used to predict customer churn consists of a monthly summary of the
customer’s activity, with a few hundreds of features grouped in 5 different categories:

• Service usage metadata: duration of calls, mobile data usage, etc.

• Subscription: tariff plan, cable connection, etc.

• Revenues: price of tariff plan, out-of-bundle amount, etc.

• Customer hardware: type of phone, number of devices, etc.

• Socio-demographics: age, region of residence, etc.

The customer ranking provided by themachine learningmodel is based on the prob-
ability of churn. However, this approach disregards the causal aspect of the problem.
Targeting high-risk customers is not necessarily the best strategy: for instance, some
customers slightly less inclined to churn could be far more receptive to retention of-
fers, and focusing the campaign on these customers could be more effective. This idea
is exploited by uplift models (Devriendt, Berrevoets, and Verbeke, 2021; Gutierrez and
Gérardy, 2016). Instead of estimating the probability of churn based only on input fea-
tures, uplift modeling focuses on estimating how much this probability changes when
the marketing action is performed. In recent years, many machine learning-based up-
lift models have been developed, such as S-learner, T-learner, and X-learner (Künzel
et al., 2019; W. Zhang, J. Li, and L. Liu, 2021).
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The term uplift is usedmainly in business settings where data from large campaigns
are available, while in other fields the same quantity is called conditional average treat-
ment effect (CATE), or heterogeneous treatment effect (Gutierrez and Gérardy, 2016).
These fields usually assume having only access to passive observations, for example,
data on the effect of a learning program on student dropout when the students decide
by themselves to take up the program.

Beyond uplift modeling, the possible behavior of a customer can be summarized
in terms of counterfactual statements (Devriendt, Berrevoets, and Verbeke, 2021). As
mentioned in Section 1.2, counterfactual statements refer to potential events in situa-
tions that contradict the observed facts, such as “Given that a customer was not called
and churned, would they still have churned if we had called them?” More generally,
we can distinguish four types of customer based on counterfactual events:

• Sure thing: the customer does not churn regardless of the action.

• Persuadable: the customer churns only if not contacted.

• Do-not-disturb: the customer churns only if contacted.

• Lost cause: the customer churns regardless of the action.

Ideally, marketing actions should only target persuadable customers. However, we can
observe only one of the two potential outcomes (this is known as the fundamental prob-
lem of causal inference (Holland, 1986)), and, generally, it is difficult to determine with
certainty who are the persuadable customers. We can, however, estimate the probabil-
ity of each customer to belong to each category.

Counterfactuals and uplift are closely related, yet formally distinct notions. The
counterfactual distribution describes the probability of each possible combination of
realized and hypothetical outcomes, while the uplift describes the change in the prob-
ability of the outcome due to treatment. While the counterfactual distribution is more
informative, it is also more difficult to estimate than the uplift. A. Li and Pearl (2019)
mention that the similarity between these two notions can lead to confusion, especially
since they collapse under the assumption of monotonicity (the absence of negative
causal effects). Estimating the counterfactual distribution serves several purposes.

• We can establish a profile of each customer category (persuadable, do-not-disturb,
etc.) based on their characteristics such as age, spending habits, subscription,
and more. This process can reveal significant business insights and offer new
perspectives for future marketing strategies.

• The number of persuadable and do-not-disturb customers offer an important way
to understand the efficacy of a churn prevention campaign by indicating, respec-
tively, howmany customers have been convinced to stay thanks to the campaign,
and how many customers churned because of the campaign. If we consider only
the campaign uplift, we have access to only the difference of these two num-
bers, hence we cannot estimate separately the positive and negative impact of
the campaign.

• More generally, counterfactual probabilities are used in various domains such as
algorithmic fairness (Plečko and Bareinboim, 2022, 2023), healthcare, or the legal
domain (Balke and Pearl, 1994).
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1.4 Motivation and aims

This doctoral thesis takes place in the context of a collaboration between the Machine
Learning Group (MLG) from the Université Libre de Bruxelles (ULB) and Orange Bel-
gium, a major telecommunication company in Belgium. It is funded by Innoviris, the
public organization that supports and funds research and innovation in the Brussels-
Capital Region. The objective of this research project is to assess how causal approaches
to analytics can help mitigate the problem of customer churn for telecommunication
companies, with a focus on the Brussels-Capital Region.

A unique opportunity offered by this research collaboration is the possibility of
experimentation in real-world direct marketing campaigns. Orange Belgium conducts
direct marketing campaigns at regular intervals in a variety of use cases, such as up-
sell, cross-sell, migration, and also churn prevention. In this thesis, we focus on churn
prevention, but most of the considerations we make are relevant to other use cases. As
mentioned in the previous sections, the traditional approach used by practitioners at
Orange Belgium consists in targeting customers with the highest propensity to churn.
This approach is at odds with the modern literature on custom targeting and causal
inference, which instead suggests the use of causal approaches such as uplift modeling.

In this thesis, we seek to evaluate various causally informed methods for under-
standing and mitigating customer churn, using large amounts of data, and validating
these methods with direct marketing campaigns. After the initial review of the liter-
ature at the beginning of the research project, it appeared that uplift modeling was
theoretically the most appropriate approach to address the issue of customer churn.
Yet, initial empirical results did not seem to suggest that uplift modeling brings a sig-
nificant improvement over the approach previously used. Most of the contributions of
this thesis constitute an investigation of this discrepancy from a theoretical and prac-
tical perspective. We also propose new ways to estimate counterfactual probabilities,
which allow us to characterize the causal nature of customer behavior. Our results on
uplift modeling and counterfactual inference apply naturally to a much larger range of
domains than churn prediction.

1.5 Thesis contributions

The contributions of this thesis are as follows:

• The publication of the first public churn dataset with anonymized customer data
from Orange Belgium, allowing the research community to evaluate new uplift
strategies on challenging and realistic data (Section 4.1).

• A benchmark of various uplift models on two churn datasets and two other pub-
licly available datasets (Section 4.2).

• The development of several strategies to integrate reach information into uplift
modeling (Section 4.4).

• The comparison of uplift and predictive modeling in a series of real customer
retention campaigns (Section 4.3).

• A new formulation of the measure of profit for uplift models, focusing on indi-
vidual cost sensitivity (Section 5.2.2), and an empirical estimator of this measure
(Section 5.2.5).
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• A proof that the uplift curve (an evaluation curve often used in the uplift liter-
ature) is an estimator of our proposed measure of profit, highlighting the strict
conditions necessary for the validity of the uplift curve (Section 5.2.4).

• A demonstration through theoretical analysis and simulations of the conditions
under which the predictive approach outperforms uplift modeling (Section 5.3).

• A set of original bounds and point estimators on the probability of counterfactu-
als, derived from the scores estimated by an uplift model (Sections 6.2 and 6.3).

• Point estimators of the probability of counterfactuals based on bivariate distribu-
tions fitted using uplift scores (Section 6.4), showing a large improvement over
the state of the art.

• An evaluation of the proposed counterfactual estimators with two different sim-
ulations (Section 6.5) and on a real-world dataset (Section 6.6).

• A characterization of different customer types using our counterfactual estima-
tors and other customer descriptive features, giving new insights on the reaction
of customers to churn campaigns (Section 6.6.3).

1.6 Activities summary

In this section, we summarize the communications and activities carried out during
the research project, in terms of publication of articles (Section 1.6.1), presentations
(Section 1.6.2), various other research activities (Section 1.6.3), and publication of code
(Section 1.6.4).

1.6.1 Publications

The following publications were written while completing the requirements for the
Doctor of Philosophy degree. The works are listed by chapter. Two of the publications
of Chapter 6 are expected to be submitted for publication early 2024.

• Chapter 4:

– Théo Verhelst, Jeevan Shrestha, et al. (2021). “Predicting reach to find per-
suadable customers: Improving uplift models for churn prevention”. In:
Discovery science. Ed. by Carlos Soares and Luis Torgo. Cham: Springer
International Publishing, pp. 44–54. isbn: 978-3-030-88942-5

– Théo Verhelst, Denis Mercier, et al. (2023a). “A churn prediction dataset
from the telecom sector: a new benchmark for uplift modeling”. In: ECML
PKDD 2023 Workshops - Workshop on Uplift Modeling and Causal Machine
Learning for Operational Decision Making

• Chapter 5:

– Théo Verhelst, Wouter Verbeke, et al. (2023). “Uplift vs. Predictive Model-
ing: a Theoretical Analysis”. In: Submitted to Journal of Machine Learning
Research

• Chapter 6:
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– Théo Verhelst, Denis Mercier, et al. (Mar. 2023b). “Partial counterfactual
identification and uplift modeling: theoretical results and real-world assess-
ment”. en. In: Machine Learning. issn: 0885-6125, 1573-0565. doi: 10.1007
/s10994-023-06317-w. url: https://link.springer.com/10.1007/s10994-023-
06317-w (visited on 05/03/2023)

– Théo Verhelst and Gianluca Bontempi (2024). “Identifying counterfactual
probabilities using bivariate distributions and uplift modeling”. In: to be
submitted

– Théo Verhelst, Mercier Denis, et al. (2024). “Customer segmentation from
counterfactual probabilities: new insights for the telecom sector”. In: to be
submitted

Moreover, the following publications provided an entry point in the research field
of predictive analytics, churn prediction and causal inference:

• Théo Verhelst, Olivier Caelen, et al. (2020). “Understanding Telecom Customer
Churn with Machine Learning: From Prediction to Causal Inference”. In: Artifi-
cial Intelligence and Machine Learning. Ed. by Bart Bogaerts et al. ISSN: 16130073.
Springer International Publishing, pp. 182–200. isbn: 978-3-030-65154-1

• Bertrand Lebichot et al. (2021). “Transfer Learning Strategies for Credit Card
Fraud Detection”. In: IEEE Access 9, pp. 114754–114766. doi: 10.1109/ACCESS.2
021.3104472

The first one, based upon the candidate’s master thesis, was presented at the Bene-
learn/BNAIC 2019 conference and published in the conference’s post-proceedings.

1.6.2 Presentations

The content of this thesis has been presented at the following international conferences:

• 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th
Belgian Dutch Conference on Machine Learning (Benelearn 2019), 6th to 8th of
November 2019, Brussels, Belgium.

• 24th International Conference on Discovery Science (DS 2021), 11th to 13th of
October 2021, online (planned to be in Halifax, Canada).

• Fundamental Challenges in Causality, 9th to 12th of May 2023, Grenoble, France
(poster presentation).

• ECML PKDD 2023 - Workshop on Uplift Modeling and Causal Machine Learning
for Operational Decision Making, 18th to 22nd of September 2023, Turin, Italy.

Moreover, advancements of the work presented in this thesis was periodically pre-
sented during bi-monthly meetings with the data science teams of Orange Belgium
and Orange Spain.
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1. Introduction

1.6.3 Research activities

Beyond active participation in the aforementioned conferences, the candidate also at-
tended the following activities:

• Hackaton “CodeVsCovid19”, 27th to 30th of March 2020, online.

• Course “Causal Diagrams: Draw Your Assumptions Before Your Conclusions”,
July 2020, online, at edx.org.

• Course “Academic Writing: The Research Article” by G. Lucy, September to De-
cember 2020, Brussels, Belgium.

• Conference “Causal Data Science Meeting”, 11th and 12th of November 2020,
online.

• Summer School “DeepLearn Summer 2021” from the 26th to the 30th of July 2021,
Las Palmas de Gran Canaria, Spain.

• Conference “Microsoft Research Summit”, 19th to 21st of October 2021, online.

• Conference “Causal Data Science Meeting”, 15th and 16th of November 2021,
online

• FARI Brussels Conference, 5th and 6th of July 2022, Brussels, Belgium

• 39th International Conference on Machine Learning (ICML), 17th to 23rd of July
2022, Baltimore, USA.

We had the opportunity to invite various researchers to give seminars at the Maching
Learning Group in the context of the research project supporting this doctoral thesis:

• Vincent Lemaire from Orange Lab (France) presented “FEARS: a FEature And
Representation Selection approach for time series classification” on the 31st of
January 2020.

• Lê Hoang Nguyen from École Polytechnique Fédérale of Lausanne (Switzerland)
presented “The security of collaborative learning” on the 13th of October 2022.

• Wouter Verbeke from KU Leuven (Belgium) presented “An introduction to causal
machine learning for operational decision making” on the 30th of March 2023.

1.6.4 Code availability

To ensure the reproducibility of our results, the code of the contributions of this thesis
are published on the online platform GitHub:

• The code for the paper “Partial counterfactual identification and uplift modeling”
is available at https://github.com/TheoVerhelst/Counterfactual-uplift-bounds

• The code for the paper “Uplift vs. Predictive Modeling: a Theoretical Analysis”
is available at https://github.com/TheoVerhelst/Uplift-Predictive-Paper

• The code for the paper “A churn prediction dataset from the telecom sector: a
new benchmark for uplift modeling” is available at https://github.com/TheoVer
helst/Churn-Uplift-Dataset-Paper

14

https://www.edx.org/
https://github.com/TheoVerhelst/Counterfactual-uplift-bounds
https://github.com/TheoVerhelst/Uplift-Predictive-Paper
https://github.com/TheoVerhelst/Churn-Uplift-Dataset-Paper
https://github.com/TheoVerhelst/Churn-Uplift-Dataset-Paper


2
Background

This thesis addresses questions at the intersection of machine learning and causal in-
ference. Although the history of these fields dates back to the twentieth century, they
are nowadays increasingly active fields of research. In this section, we lay the foun-
dations of the key concepts used in our work, starting with probability theory (Sec-
tion 2.1) Pearl’s theory of causality (Section 2.2), to finally introduce machine learning
(Section 2.3).

2.1 Probability theory

Uncertainty is prevalent in the physical world. In quantummechanics, for example, un-
certainty is a fundamental component of the theory. Measuring the spin of an electron
will either indicate up or down, and, in some situations, the outcome of the measure-
ment cannot be predicted with certainty, even with the best measure instruments1. In
the rest of science, uncertainty is due to limitations in our ability to model reality and
make inferences from it. Probability theory is one of the many mathematical models
of partial information and uncertainty (Parsons and Hunter, 1998). It provides a repre-
sentation of the partial knowledge of a system, a set of inference rules to update this
representation in the presence of data, and a way to generate data as if it were coming
from a system compatible with the current state of our knowledge.

In this section, we define the mathematical notions related to probability theory
that are used throughout this thesis. We assume the reader to be familiar with the
concept of probability measure, discrete and absolutely continuous random variables,
probability mass function, probability density function (pdf), joint and marginal distri-
butions, and conditional independence. See Appendix A for a detailed introduction and
a definition of these concepts.

2.1.1 Distribution summaries

It is often desirable to summarize a probability distribution into a compact numerical
representation. This is useful to obtain a more concise representation of the data or

1There is a longstanding debate on whether this uncertainty is a fundamental aspect of nature, or if
it is due to an incomplete formulation of the theory. Physicists showed that any theory in which some
hidden variables predetermine the outcome of a quantum experiment must be nonlocal (Aspect, Grangier,
and Roger, 1982; Bell, 1964), that is, involving a spooky action at a distance (Einstein et al., 1969).
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2. Background

when reporting the results of an experiment. This is also useful for more technical
tasks, such as fitting the parameters of a distribution using the method of moments.

Expected value
The expected value, also calledmean, of a distribution is the central tendency of that dis-
tribution or, loosely speaking, the average outcome that we can expect when collecting
observations from the random variable.

Definition 2.1 (Expected value). The expected value of a discrete random variable 𝑥 is
defined as

𝔼[𝑥] = ∑
𝑥∈𝒳

𝑥𝑃(𝑥 = 𝑥) (2.1)

and the expected value of an absolutely continuous random variable 𝑥 with probability
density 𝑓𝑥 is defined as

𝔼[𝑥] = ∫𝒳 𝑥𝑓𝑥 (𝑥) d𝑥. (2.2)

When the random variable to be summed or integrated over is not easily identified
in the expression between brackets, we indicate it in subscript as 𝐸𝑥 [⋅]. The expected
value may possibly be infinite (i.e., either ∞ or −∞), or be undefined.

As an example, consider the game of roulette in which the ball falls either into a
red slot with probability 18/37, into a black slot with probability 18/37, or into slot 0,
which always results in a loss, with probability 1/37. Assume that a player bets $1 on
the red color. Then they will win $2 with probability 18/37, and loose their bet with
probability 19/37. The expected value of the gain, noted 𝑥 , is therefore

𝔼[𝑥] = 18
37 $2 + 19

37 $0 ≈ $0.973.

This indicates that betting on color earns on average 97.3% of the money put on the
table.

An important property of the expected value operator 𝔼[⋅] is its linearity: for any
random variables 𝑥 and 𝑦 , and for any two real numbers 𝑎 and 𝑏, we have

𝔼[𝑎𝑥 + 𝑏𝑦] = 𝑎𝔼[𝑥] + 𝑏𝔼[𝑦]. (2.3)

This follows directly from its definition in terms of a sum (for discrete random variables)
or an integral (for absolutely continuous random variables), which are themselves lin-
ear operators. We will often use this property in our mathematical developments.

2.1.2 Conditional expected value

The expected value operator can be generalized to conditional distributions. This rep-
resent the mean of a random variable given that we know the value of another random
variable.

Definition 2.2. The conditional expected value of a discrete random variable 𝑥 given
the realization of another random variable 𝑦 = 𝑦 is defined as

𝔼[𝑥 ∣ 𝑦 = 𝑦] = ∑
𝑥∈𝒳

𝑥𝑃(𝑥 = 𝑥 ∣ 𝑦 = 𝑦) (2.4)
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2.1. Probability theory

and the conditional expected value of an absolutely continuous random variable 𝑥 with
a conditional probability density 𝑓𝑥∣𝑦=𝑦 is defined as

𝔼[𝑥 ∣ 𝑦 = 𝑦] = ∫𝒳 𝑥𝑓𝑥∣𝑦=𝑦 (𝑥) d𝑥. (2.5)

It follows from this definition and the definition of conditional probability density
function (Definition A.8) that the conditional expected value of an absolutely continu-
ous random variable can also be expressed as

𝔼[𝑥 ∣ 𝑦 = 𝑦] = ∫𝒳 𝑥 𝑓𝑥,𝑦 (𝑥, 𝑦)𝑓𝑦 (𝑦)
d𝑥 = 1

𝑓𝑦 (𝑦) ∫𝒳
𝑥𝑓𝑥,𝑦 (𝑥, 𝑦) d𝑥. (2.6)

Variance
The variance is another important quantity, which describes the tendency of the real-
izations to be close to the expected value. For example, the distribution of the throws
of a high-level darts player will be much tighter than that of a beginner player, which
is formally expressed as having a lower variance.

Definition 2.3 (Variance). The variance of a random variable 𝑥 is defined as

Var(𝑥) = 𝔼[(𝑥 − 𝔼[𝑥])2]. (2.7)

This definition supposes that the random variable 𝑥 has an expected value 𝔼[𝑥],
and that the square of the difference between 𝑥 and 𝔼[𝑥] is also a random variable that
has an expected value. Some distributions do not respect these conditions, such as the
Student t-distribution, a generalization of the standard normal distribution. Depending
on the value of its parameter, its variance can be infinite, or its mean and variance can
be undefined.

Higher moments
The notion of expected value and variance can be generalized to higher orders, leading
to the notion of distribution moments. Moments come in two varieties: central mo-
ments and raw moments (also called non-central moments). The expected value is the
first non-central moment, while the variance is the second central moment. Other mo-
ments, such as skewness and kurtosis, are sometimes used in the literature to describe
distributions beyond their mean and variance. In this thesis, however, higher-order
moments will only be used in the context of an estimation technique called the method
of moments, hence we will not discuss the specific meaning of skewness or kurtosis.

Definition 2.4 (Moments). The 𝑛-th central moment of a random variable 𝑥 is defined
as

𝑀𝑛(𝑥) = 𝔼[(𝑥 − 𝔼[𝑥])𝑛] = {∑𝑥∈𝒳 (𝑥 − 𝔼[𝑥])𝑛𝑃(𝑥 = 𝑥) if 𝑥 is discrete,

∫𝒳 (𝑥 − 𝔼[𝑥])𝑛𝑓𝑥 (𝑥) d𝑥 if 𝑥 is absolutely continuous.
(2.8)

The 𝑛-th raw moment of a random variable 𝑥 is defined as

𝑅𝑛(𝑥) = 𝔼[𝑥𝑛] = {∑𝑥∈𝒳 𝑥𝑛𝑃(𝑥 = 𝑥) if 𝑥 is discrete,

∫𝒳 𝑥𝑛𝑓𝑥 (𝑥) d𝑥 if 𝑥 is absolutely continuous.
(2.9)
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One can see that by setting 𝑛 = 1, the raw moment corresponds to the expected
value in Definition 2.1, while with 𝑛 = 2, the central moment corresponds to the vari-
ance in Definition 2.3. While higher-order central moments are easier to interpret, the
simpler analytical form of raw moments lend themselves more easily to computations
and mathematical derivations.

2.1.3 Information theory

Information theory is a discipline used at the intersection of mathematics, computer
science, and engineering. It was first developed by Shannon (1948). In this work, we
use two notions of information theory, namely entropy and mutual information. This
section is inspired by the excellent textbook by T. M. Cover and Thomas (1991).

Entropy
Entropy, in information theory2, is a measure of the quantity of uncertainty embedded
in a probability distribution. As an example, consider the random experiment of a coin
toss. This experiment has two outcomes, heads and tails, and when the coin is fair (i.e.,
each outcome is equally likely), the entropy is maximum. If the coin is biased towards
one side, then the entropy is lower, because we expect the heavier side to come up with
a higher probability, hence the outcome is less uncertain.

Definition 2.5 (Entropy). The entropy 𝐻(𝑥) of a discrete random variable 𝑥 is defined
as

𝐻(𝑥) = − ∑
𝑥∈𝒳

𝑃(𝑥) log 𝑃(𝑥). (2.10)

In this definition, the base of the logarithm can be chosen arbitrarily, but a base of
two is commonly used. In the coin toss example, if the coin is fair, assuming a logarithm
in base two, the entropy is

𝐻(𝑥) = −1
2 log 1

2 − 1
2 log 1

2 = 1.

If the coin has a probability 75% of landing on one side, the entropy becomes

𝐻(𝑥) = −3
4 log 3

4 − 1
4 log 1

4 ≈ 0.8113.

Note that we do not provide a definition for the entropy of an absolutely continuous
random variable. It would be tempting to replace the sum in Eq. (2.10) by an integral,
much like in Definitions 2.1 and 2.4. However, the resulting quantity, called differential
entropy, does not possess some of the mathematical properties of entropy. Alternative
definitions exist, but we will not discuss them in this thesis.

Joint and conditional entropy
We can naturally extend the notion of entropy to the bivariate case:

2The notion of entropy also exists in statistical mechanics, which is a closely related but nonetheless
distinct concept.
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2.1. Probability theory

Definition 2.6 (Joint entropy). The joint entropy 𝐻(𝑥, 𝑦) of two discrete random vari-
ables 𝑥 and 𝑦 is defined as

𝐻(𝑥, 𝑦) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑃(𝑥, 𝑦) log 𝑃(𝑥, 𝑦). (2.11)

Also, we can extend the definition of univariate entropy to the case where the dis-
tribution is conditioned on another random variable. This represents the uncertainty
remaining in the first variable, given that we know the value of the second.

Definition 2.7 (Conditional entropy). The conditional entropy 𝐻(𝑦 ∣ 𝑥) of a discrete
random variable 𝑦 given a random variable 𝑥 is defined as

𝐻(𝑦 ∣ 𝑥) = −𝔼𝑥 [∑
𝑦∈𝒴

𝑃(𝑦 ∣ 𝑥) log 𝑃(𝑦 ∣ 𝑥)] . (2.12)

When 𝑥 is also discrete, this reduces to

𝐻(𝑦 ∣ 𝑥) = − ∑
𝑥∈𝒳

𝑃(𝑥) ∑
𝑦∈𝒴

𝑃(𝑦 ∣ 𝑥) log 𝑃(𝑦 ∣ 𝑥) (2.13)

= − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑃(𝑥, 𝑦) log 𝑃(𝑦 ∣ 𝑥). (2.14)

When 𝑥 is absolutely continuous with probability density 𝑓𝑥 , this reduces to

𝐻(𝑦 ∣ 𝑥) = ∫𝒳 𝑓𝑥 (𝑥)𝐻(𝑦 ∣ 𝑥 = 𝑥) d𝑥 (2.15)

= −∫𝒳 𝑓𝑥 (𝑥)∑
𝑦∈𝑦

𝑃(𝑦 ∣ 𝑥) log 𝑃(𝑦 ∣ 𝑥) d𝑥. (2.16)

Relative entropy
The relative entropy, also called the Kullback-Leibler (KL) divergence, measures the
distance between two probability distributions. Here, by probability distributions, we
mean probabilitymass functions for discrete variables and probability density functions
for absolutely continuous random variables. It is close to zero when the two random
variables have very similar distributions and can be arbitrarily large otherwise. This
notion is used, for example, to measure the goodness-of-fit of a candidate distribution
with respect to a reference distribution.

Definition 2.8. The relative entropy or Kullback-Leibler divergence between two prob-
ability mass functions 𝑃 and 𝑄 with the same domain 𝒳 is

𝐷(𝑃 ∥ 𝑄) = ∑
𝑥∈𝒳

𝑃(𝑥) log 𝑃(𝑥)
𝑄(𝑥) . (2.17)

The relative entropy between two probability density functions 𝑓 and 𝑔 with the same
domain 𝒳 is

𝐷(𝑓 ∥ 𝑔) = ∫𝒳 𝑓 (𝑥) log 𝑓 (𝑥)
𝑔(𝑥) d𝑥. (2.18)

We use the convention that 0 log 0
0 = 0, 0 log 0

𝑎 = 0 and 𝑎 log 𝑎
0 = +∞.
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Mutual information
Mutual information represents the quantity of information that one variable possesses
about another. We have seen in Appendix A.4.2 that observing one variable can change
the distribution of another, leading to the conditional distribution. Mutual information
measures the extent to which this conditional distribution differs from the marginal
distribution. It has important uses in machine learning, for example in the task of fea-
ture selection. Feature selection consists in determining which variables (i.e., features)
should be considered or discardedwhen building amodel to predict the value of a target
variable. Variables with a low mutual information with the target variable can usually
be discarded.

Definition 2.9 (Mutual information). The mutual information 𝐼 (𝑥, 𝑦) between two dis-
crete random variables 𝑥 and 𝑦 is defined as

𝐼 (𝑥, 𝑦) = ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑃(𝑥, 𝑦) log 𝑃(𝑥, 𝑦)
𝑃(𝑥)𝑃(𝑦) . (2.19)

The mutual information between two absolutely continuous random variables with
density 𝑓𝑥,𝑦 is defined as

𝐼 (𝑥, 𝑦) = ∫𝒳 ∫𝒴 𝑓𝑥,𝑦 (𝑥, 𝑦) log
𝑓𝑥,𝑦 (𝑥, 𝑦)
𝑓𝑥 (𝑥)𝑓𝑦 (𝑦)

d𝑥 d𝑦. (2.20)

Note that there exists a unique definition that generalizes these two cases and every
other case as well: the mutual information between discrete and absolutely continuous
variables, and between random variable that are neither discrete nor absolutely contin-
uous (T. M. Cover and Thomas, 1991, p. 252). However, Definition 2.9 is sufficient for
our purpose.

In the case of discrete variables, we can show the following identities:

𝐼 (𝑥, 𝑦) = 𝐻(𝑦) − 𝐻(𝑦 ∣ 𝑥) (2.21)

= 𝐻(𝑥) − 𝐻(𝑥 ∣ 𝑦) (2.22)

= 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦). (2.23)

These identities provide some intuition on the mutual information: it can be seen as
the reduction in uncertainty in one variable due to the observation of the other. Fig. 2.1
provides a schematic representation of the relationship between entropy, conditional
entropy, joint entropy and mutual information.

2.1.4 Convergence of random variables

In various applications of statistics and machine learning, we are interested in the be-
havior of an estimator as the number of data samples increases. This can be formalized
with the notion of convergence of a sequence of random variables. For example, let 𝑥𝑛
denote a measure of the performance of a machine learning model trained with 𝑛 data
samples. This quantity is a random variable, since the training set is assumed to be
random as well. We want to know whether the sequence 𝑥1, 𝑥2, … converges to some
fixed value or distribution as 𝑛 gets very large. There are three main definitions of con-
vergence of a sequence of random variables: convergence in distribution, convergence
in probability, and almost sure convergence. In this thesis, we only use the notion of
convergence in probability; therefore, we will define only this one.
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𝐻(𝑦 ∣ 𝑥)
𝐻(𝑦)

𝐻(𝑥 ∣ 𝑦)
𝐻(𝑥) 𝐼 (𝑥, 𝑦)

𝐻(𝑥, 𝑦)

Figure 2.1 Schematic representation of the relationship between entropy and other
quantities as a Venn diagram, where 𝐻(𝑦) and 𝐻(𝑥) symbolize sets and Eqs. (2.21)
to (2.23) represent set relationships of union and difference. Diagram from (Verhelst,
2018).

Definition 2.10. Let 𝑥1, 𝑥2, … be an infinite sequence of absolutely continuous random
variables with domain ℝ. This sequence converges in probability to a random variable
𝑥 , noted

lim𝑛→∞ 𝑥𝑛 = 𝑥 in probability, (2.24)

if, for any 𝜀 > 0,
lim𝑛→∞ 𝑃 (|𝑥𝑛 − 𝑥| ≥ 𝜀) = 0. (2.25)

Intuitively, this definition requires that the probability that 𝑥𝑛 and 𝑥 differ by a
significant amount must decrease down to zero as 𝑛 increases.

2.1.5 Families of probability distributions

Most random distributions in practice are defined in terms of one or more parameters.
For example, the Bernoulli distribution, representing a binary experiment such as toss-
ing a coin, is parameterized by a number 𝑝 between 0 and 1, indicating the probability
of, say, obtaining a tail. When the parameters are not fixed, we call this a family of
distributions. In this section, we describe three families of distributions: the Bernoulli
distributions, the beta distributions, and the Dirichlet distributions. We calculate the
value of some of the notions defined in the previous sections. This section also serves
as a reference point when these families of distributions are used in this thesis. To sim-
plify the language, we shall thereafter refer to families of distributions as distributions.

Bernoulli distribution
The simplest distribution is the Bernoulli distribution, whose domain is the binary set
{0, 1}. The parameter 𝑝 indicates the probability of the realization 1. When a random
variable 𝑥 is distributed according to a Bernoulli distribution, we note

𝑥 ∼ Bern(𝑝), 𝑃(𝑥 = 1) = 𝑝.

Now, let us compute the different quantities defined in the previous sections. The ex-
pected value of a Bernoulli-distributed random variable is

𝔼[𝑥] = 1𝑝 + 0(1 − 𝑝) = 𝑝. (2.26)
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Figure 2.2 Entropy of a Bernoulli-distributed random variable as a function of 𝑝.

Its variance is

Var(𝑥) = 𝔼[(𝑥 − 𝑝)2] = 𝔼[𝑥2] + 𝑝2 − 2𝔼[𝑥]𝑝 = 𝑝(1 − 𝑝) (2.27)

where we used the linearity of the expected value. The higher-order raw moments are
all equal to 𝑝, since 1𝑛 = 1 for any 𝑛 and 0𝑛 = 0 for any 𝑛 > 0. The higher-order central
moments are

𝔼[(𝑥 − 𝑝)𝑛] = 𝑝(1 − 𝑝)𝑛 + (1 − 𝑝)(−𝑝)𝑛. (2.28)

Finally, the entropy is

𝐻(𝑥) = −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝). (2.29)

The entropy as a function of 𝑝 is depicted in Fig. 2.2.

Beta distribution
Abeta-distributed randomvariable is absolutely continuous and takes its values in [0, 1].
It is parameterized by two positive values, usually noted 𝑎 and 𝑏, which, loosely speak-
ing, dictate how much of the probability density is concentrated close to respectively 0
and 1. The fact that a random variable 𝑥 is beta-distributed is noted 𝑥 ∼ Beta(𝑎, 𝑏). Its
probability density function is

𝑓𝑥 (𝑥) = 1
Β(𝑎, 𝑏)𝑥

𝑎−1(1 − 𝑥)𝑏−1 (2.30)

where the term Β(𝑎, 𝑏) ensures that the integral of the pdf over [0, 1] is equal to one.
This term is the beta function, defined as

Β(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏) (2.31)

where the term Γ(⋅) is the gamma function, a generalization of the factorial operator to
the complex numbers.3 Fig. 2.3 shows the pdf of two different beta distributions.

The derivation of the expected values, variance, moments and entropy of the beta
distribution is slightly more complex than in the case of the Bernoulli distribution. For
the sake of brevity, we will limit ourselves to give the formulas without showing their
derivations. The expected value is

𝔼[𝑥] = 𝑎
𝑎 + 𝑏 , (2.32)

3See the Wikipedia article on the gamma function for more details.
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Figure 2.3 Probability density function of two beta-distributed random variables.

the variance is
Var(𝑥) = 𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1) , (2.33)

and the entropy is

𝐻(𝑥) = log(Β(𝑎, 𝑏)) − (𝑎 − 1)𝜓(𝑎) − (𝑏 − 1)𝜓 (𝑏) + (𝑎 + 𝑏 − 2)𝜓(𝑎 + 𝑏) (2.34)

where 𝜓(𝑎) is the digamma function, defined as

𝜓(𝑎) = d log Γ(𝑎)
d𝑎 . (2.35)

We will not use the central moments of the beta distribution in this thesis, but the
raw moments are frequently used in our simulation experiments. In fact, we give a
generalization of the raw moments: for any 𝑟 , 𝑠 > 0, we can show that

𝔼[𝑥 𝑟 (1 − 𝑥)𝑠] = Β(𝑎 + 𝑟, 𝑏 + 𝑠)
Β(𝑎, 𝑏) . (2.36)

A key property of the gamma function is that, for any real 𝑥 and any integer 𝑛, we
have Γ(𝑥 + 𝑛) = 𝑥𝑛Γ(𝑥) where 𝑥𝑛 = 𝑥(𝑥 + 1)… (𝑥 + 𝑛 − 1) is called the rising factorial.
This allows for an alternate expression for the moments of the beta distribution, given
that 𝑟 and 𝑠 are integers:

𝔼[𝑥 𝑟 (1 − 𝑥)𝑠] = Β(𝑎 + 𝑟, 𝑏 + 𝑠)
Β(𝑎, 𝑏) = Γ(𝑎 + 𝑟)Γ(𝑏 + 𝑠)Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)Γ(𝑎 + 𝑏 + 𝑟 + 𝑠) = 𝑎𝑟𝑏𝑠
(𝑎 + 𝑏)𝑟+𝑠

. (2.37)

This proves particularly useful in numerical computations since the rising factorial is
much faster to compute and less affected by numerical instability than the gamma func-
tion. Finally, when 𝑠 = 0, we have the raw moments 𝔼[𝑥 𝑟 ] = 𝑎𝑟/(𝑎 + 𝑏)𝑟 , which itself
reduces to 𝔼[𝑥] = 𝑎/(𝑎 + 𝑏) as in Eq. (2.32) when 𝑟 = 1.

Dirichlet distribution
The Dirichlet distribution is a generalization of the beta distribution to multiple di-
mensions. We note the number of dimensions as an integer 𝑑 , and the random vector
𝑥 = [𝑥1, … , 𝑥𝑑 ]. The domain of the Dirichlet distribution is the unit simplex, that is, the
set of 𝑑-dimensional vectors 𝑥 with positive values summing up to one:

𝒳 = {𝑥 ∈ ℝ𝑑 ∣ 𝑥𝑖 ≥ 0 for all 𝑖 ∈ {1, … , 𝑑} and
𝑑
∑
𝑖=1

𝑥𝑖 = 1} . (2.38)
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Figure 2.4 Probability density function of a 3-dimensional Dirichlet distribution with
parameter vector 𝑚 = [2, 4, 8]. The triangular grid conveniently represents the three-
dimensional simplex. Plot drawn using the Python package mpltern.

The Dirichlet distribution is parameterized by a positive vector 𝑚 = [𝑚1, … , 𝑚𝑑 ], and
we define that a random vector 𝑥 follows a Dirichlet distribution, noted 𝑥 ∼ Dir(𝑚),
when its probability density function is

𝑓𝑥 (𝑥) = 1
Β(𝑚)

𝑑
∏
𝑖=1

𝑥𝑚𝑖−1𝑖 (2.39)

where the term Β(𝑚) is a generalization of the beta function to vector inputs:

Β(𝑚) = ∏𝑑
𝑖=1 Γ(𝑚𝑖)

Γ (∑𝑑
𝑖=1 𝑚𝑖)

. (2.40)

Fig. 2.4 shows the probability density function of a Dirichlet distribution with three
dimensions on a triangular grid. One can see that the Dirichlet distribution is indeed
a generalization of the beta distribution: if 𝑦 ∼ Beta(𝑎, 𝑏), then the vector [𝑦 , 1 − 𝑦]
follows a Dirichlet distribution with parameter vector [𝑎, 𝑏].

The expected value of a component 𝑥 𝑗 of the random vector 𝑥 is

𝔼[𝑥 𝑗] =
𝑚𝑗
𝑀 with 𝑀 =

𝑑
∑
𝑖=1

𝑚𝑖. (2.41)

The variance is

Var(𝑥 𝑗) =
𝑚𝑗(𝑀 − 𝑚𝑗)
𝑀2(𝑀 + 1) . (2.42)

More generally, the raw moments of the Dirichlet distribution are, for a positive real
vector 𝑎 ∈ ℝ𝑑≥0,

𝔼[
𝑑

∏
𝑖=1

𝑥𝑎𝑖𝑖 ] = Β(𝑚 + 𝑎)
Β(𝑚) . (2.43)

Similarly to the case of the moments of the beta distribution in Eq. (2.37), when the
components of 𝑎 are integers, we can use the properties of the gamma function to
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express the raw moments in terms of rising factorials:

𝔼[
𝑑

∏
𝑖=1

𝑥𝑎𝑖𝑖 ] = ∏𝑖=1 𝑚𝑎𝑖𝑖
𝑀𝐴

where 𝐴 =
𝑑
∑
𝑖=1

𝑎𝑖. (2.44)

We do not provide an expression for the central moments of the Dirichlet distribution,
since they are not used in this thesis. Lastly, the entropy of the random vector 𝑥 is

𝐻(𝑥) = logΒ(𝑚) + (𝐴 − 𝑑)𝜓(𝐴) −
𝑑
∑
𝑖=1

(𝑎𝑖 − 1)𝜓(𝑎𝑖). (2.45)

2.2 Causality theory

Most scientific inquiries are inherently causal in nature, aiming to uncover the cause-
and-effect relationships that underlie various phenomena. Whether it is estimating
the efficacy of a new drug, assessing the impact of an educational policy, or unravel-
ing the formation mechanisms of supermassive black holes at the center of galaxies,
understanding causality is at the heart of scientific investigations.

Traditional statistics, based on the theory of probability presented in Section 2.1,
has been a valuable tool in many scientific fields to draw associations and identify
patterns in data. However, it has inherent limitations when it comes to establishing
causal relationships. One of the main challenges with traditional statistical methods
is that they primarily focus on associations or correlations between variables. These
methods are excellent at revealing patterns, but they can’t discern whether one variable
is causing changes in another or if those changes are coincidental or influenced by other
hidden factors.

Judea Pearl’s theory of causality (Pearl, 2009), emerged as a response to these lim-
itations. Pearl recognized the need for a more rigorous framework to address causal
questions. His work was motivated, in part, by the complexities involved in social sci-
ences, and particularly in econometrics, where randomizing variables for controlled
experiments, as often done in natural sciences, is not always feasible or ethical.

Pearl’s theory of causality introduced a paradigm shift by providing a structured
framework for reasoning about causation. By representing causal relationships using
directed acyclic graphs (DAGs), Pearl’s approach enabled researchers to make causal
inferences, even in observational data, where controlled experiments are impractical.
He also emphasized the importance of counterfactuals, which involve comparing what
happened with what might have happened in the absence of a specific cause, to under-
stand causation. It is worth noting that this is not the only mathematical formulation of
causality. The most widely used alternative formulation is Rubin’s causal model (Don-
ald B Rubin, 2005, 1974). It is based on the notions of intervention and potential outcome.
There is a longstanding debate between proponents of both approaches (Weinberger,
2021), and since the formal equivalence of the two frameworks has been proven (Pearl,
2009, Sec. 7.4.4), the essence of the debate relates to the way assumptions are encoded,
and the focus on either individual treatment effect in Rubin’s framework or structural
knowledge in Pearl’s framework.

In the next section, we present an overview of Pearl’s causal framework through
the causal hierarchy, then we develop its mathematical formalism in the following four
sections. The mathematical definitions are based upon Pearl (2009), Bareinboim et al.
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(2020) and Peters, Janzing, and Schölkopf (2017). For a less technical introduction to
causality, we refer the interested reader to the classic The book of why: the new science
of cause and effect by Pearl and Mackenzie (2018), or Why: A guide to finding and using
causes by Kleinberg (2015).

2.2.1 Pearl’s causal hierarchy

In Pearl’s framework, formal knowledge and its associated mathematical representa-
tion are organized in three layers of increasing abstraction (Bareinboim et al., 2020),
which highlight the roles of observation, intervention, and imagination. The data at one
layer is almost always not sufficient to estimate probabilities relating to higher layers.

1. The observational layer represents all knowledge derived from observing the
world: information such as correlation and association between variables, condi-
tional probabilities learned with statistical or machine-learning models, or even
more complex knowledge representations such as graphical Bayesian models
(Pearl, 1988).

2. The interventional layer represents all knowledge related to the consequences of
experiments, manipulations, and interventions in a system. Typical examples of
interventional knowledge include the results of randomized experiments in phar-
maceutical research or A / B testing in online marketing. This layer is dedicated
to understanding the cause-and-effect relationships that emerge when specific
interventions are implemented and enables the direct assessment of how these
interventions influence the system’s behavior.

3. The counterfactual layer represents knowledge relating to alternate states of the
world that could have occurred if different choices or actions had been made.
Given that we observe a specific outcome, would the outcome be different had
we chosen another course of action? Counterfactuals also formalize notions such
as the probability of causation.

Although the difference between the observational layer and the two other layers is
fairly intuitive4, the nuance between interventions and counterfactuals might be less
clear. Observational knowledge can be gathered through experiments, whereas coun-
terfactual knowledge cannot be deduced from observations or experiments alone.

To illustrate, let us consider the example of a telecom company attempting to pre-
vent customer churn with marketing emails. The average causal effect of a marketing
email on customer churn can be estimated with a randomized campaign. A target group
is created by randomly selecting a subset of customers, and each of these customers re-
ceives an email from the company. The remaining customers constitute the control
group, and they do not receive any email as part of the campaign. The difference in
churn rate between the control and target group is called the average causal effect, and
belongs to the interventional layer. Now, consider customers who have churned and
are in the target group. What is the probability that they would have churned, had they
not been called? This is a counterfactual probability and, without further assumption,

4Wewill avoid discussing the justification of separating observation from intervention as a fundamen-
tal aspect of knowledge representation, since this is the subject of a decades-long debate which is beyond
the scope of this work.
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(a) An undirected graph.
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(b) A directed graph.
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(c) A directed acyclic graph.

Figure 2.5 Examples of different types of graphs. Notice that (b) contains a cycle
between 𝑣1, 𝑣2 and 𝑣3.

this information cannot be computed from the available experimental data, since this
involves estimating the probability of events that are, by definition, not observed.

Each layer is distinct from the ones below it and expresses information not avail-
able in lower layers. This has been proven by Bareinboim et al. (2020) by inscribing the
three layers in a formal language and proving that, in a measure-theoretic sense, the
information expressed in a given layer is almost always insufficient to answer queries
in a higher layer. This implies, for example, that mere correlations are not sufficient to
estimate causal effects, or that causal effects are not sufficient to estimate counterfac-
tuals.

2.2.2 Directed acyclic graphs and independence

The most important feature of Pearl’s causal framework is the representation of knowl-
edge with causal graphs. A causal graph indicates direct cause-effect relationships be-
tween random variables. In this section, we provide the mathematical definition of
graphs in general, which are used in various fields of science and mathematics. We
then state important results relating probability distributions and graphs of random
variables.

Definition 2.11 (Graph). A graph 𝐺 is a pair (𝑉 , 𝐸) where 𝑉 is a finite set of vertices,
and 𝐸 is a set of pairs of vertices, called edges. If the pairs in 𝐸 are ordered, we say that
the edges are oriented, we note edges as 𝑣1 → 𝑣2, and we say that the graph is directed.
Otherwise, we say that the graph is undirected, and we note edges as 𝑣1 — 𝑣2.

Fig. 2.5 shows various examples of graphs. In this definition, vertices can be any
kind of mathematical object, such as numbers, functions, or random variables. In
causality theory, we are interested in a certain class of graphs, called directed acyclic
graphs, or DAGs for short. Acyclic means that the graph does not contain loops or cy-
cles, that is, following edges cannot lead to an already visited vertex. To define this last
property, we first define the notion of path.

Definition 2.12 (Path). A directed path in a graph 𝐺 = (𝑉 , 𝐸) is a sequence of 𝑛 vertices
𝑣1, … , 𝑣𝑛 in 𝑉 such that 𝑣𝑖 ≠ 𝑣𝑗 for all distinct 𝑖, 𝑗 = 1, … , 𝑛, and such that for all 𝑖 =
1, … , 𝑛 − 1, there is an edge 𝑣𝑖 → 𝑣𝑖+1 in 𝐸. An undirected path in a graph 𝐺 = (𝑉 , 𝐸) is
a sequence of 𝑛 vertices 𝑣1, … , 𝑣𝑛 in 𝑉 such that 𝑣𝑖 ≠ 𝑣𝑗 for all distinct 𝑖, 𝑗 = 1, … , 𝑛, and
such that, for all 𝑖 = 1, … , 𝑛 − 1, there is an edge 𝑣𝑖 → 𝑣𝑖+1 or an edge 𝑣𝑖+1 → 𝑣𝑖 in 𝐸.

Definition 2.13 (Directed acyclic graph). A directed acyclic graph (DAG) is a graph
𝐺 = (𝑉 , 𝐸) such that, for all 𝑣1, 𝑣2 ∈ 𝑉 , if there is a directed path from 𝑣1 to 𝑣2, then
there is no directed path from 𝑣2 to 𝑣1.
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The notion of d-separation is the graphical equivalent of conditional independence
between random variables. The d in d-separation stands for dependency, as it estab-
lishes a criterion to determine whether two sets of variables are independent when
separated by another set of variables. It is fundamental in causal inference, as it sys-
tematically determines the graphs compatible with the observed data, and the condi-
tional independence between variables that should be observed in any data compatible
with a given graph. The formal definition of d-separation is not intuitive, thus we will
provide an example following the definition. First, we need to define some additional
graph terminology.

Definition 2.14 (Graph relationships). Let 𝐺 = (𝑉 , 𝐸) be a directed acyclic graph. For
any vertex 𝑣 ∈ 𝑉 , we define the following sets.

• The parents of 𝑣 , noted PA𝐺(𝑣), is the set of vertices 𝑢 such that there exists an
edge 𝑢 → 𝑣 .

• The children of 𝑣 , noted CH𝐺(𝑣), is the set of vertices 𝑤 such that there exists an
edge 𝑣 → 𝑤 .

• The ancestors of 𝑣 , noted AN𝐺(𝑣); is the set of vertices 𝑢 such that there exists a
directed path from 𝑢 to 𝑣 .

• The descendants of 𝑣 , noted DE𝐺(𝑣), is the set of vertices 𝑤 such that there exists
a directed path from 𝑣 to 𝑤 .

Let 𝑢, 𝑣 , 𝑤 be three vertices in 𝑉 . We give special names to the following edge configu-
rations:

• The configuration 𝑢 → 𝑣 → 𝑤 is called a chain.

• The configuration 𝑢 ← 𝑣 → 𝑤 is called a fork.

• The configuration 𝑢 → 𝑣 ← 𝑤 is called a collider.

Note that the set of ancestors of 𝑣 contains 𝑣 , using the trivial path that contains
only one vertex, 𝑣 . By the same argument, 𝑣 is also its own descendant, although it is
not its own parent or child.

Definition 2.15 (d-separation). An undirected path 𝑝 is blocked by a set of vertices
𝑍 ⊆ 𝑉 if and only if

(i) 𝑝 contains a chain 𝑢 → 𝑧 → 𝑣 or a fork 𝑢 ← 𝑧 → 𝑣 for some 𝑧 ∈ 𝑍 , or

(ii) 𝑝 contains a collider 𝑢 → 𝑧 ← 𝑣 such that neither 𝑧 nor any of its descendants
are in 𝑍 .

Vertex sets 𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑉 are d-separated by 𝑍 in graph 𝐺 if every path from a node
in 𝑋 to a node in 𝑌 is blocked by 𝑍 . This is noted 𝑋 ⟂𝐺 𝑌 ∣ 𝑍 . When 𝑍 is the empty
set, we write 𝑋 ⟂𝐺 𝑌 .

To illustrate this notion, consider Fig. 2.6. In this fictional example, customers de-
cide to churn based only on the amount to pay on the invoice. This invoice is in turn
determined by the data usage (and indirectly by the age of the customer), and also by
the location: a customer in a less populated area pays more because establishing the
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Invoice

Churn

Data usageAge Location

Figure 2.6 Fictional causal graph illustrating the notion of d-separation. Age and in-
voice are d-separated given data usage, whereas data usage and location are no longer
d-separated once we know the invoice amount or the churn variable. Example from
(Verhelst, 2018).

connectivity is more expensive for the operator. In this configuration, the age and the
invoice are d-separated by the data usage, since knowing the data usage of a client re-
moves any information the age may bring about the invoice amount. This illustrates
the first property of a blocked path in Definition 2.15. Furthermore, data usage and
location are d-separated given the empty set, since there is a collider (data usage →
invoice ← location) between them. This illustrates the second property of a blocked
path in Definition 2.15. However, if we know the invoice variable, data usage and lo-
cation are no longer d-separated, as knowing the invoice amount allows one to explain
away one variable with the other. If the client has a large invoice amount and lives in
a populated area, that must mean that their data usage was probably high. This shows
how a variable can open a path in a collider, as mentioned in the second property in
Definition 2.15. Note that knowing the churn variable instead of the invoice would
have the same effect since if the customer decides to churn, then the invoice amount is
probably high, which brings us back to the previous case.

As mentioned before, Pearl’s framework represents the structure of causal relation-
ships between random variables with DAGs. In the following, we will therefore assume
that the vertices of the graph 𝐺 are random variables. We note the set of vertices as
𝑉 = {𝑣1, … , 𝑣𝑑 }, and the domain of (𝑣1, … , 𝑣𝑑 ) is noted𝒱 . We assume that 𝑉 has a joint
probability 𝑃(𝑣1 = 𝑣1, … , 𝑣𝑑 = 𝑣𝑑 ).

We mentioned earlier that the d-separation between nodes in a graph is the graph-
theoretic equivalent of the notion of conditional independence between random vari-
ables. We now formalize this equivalence. First, we need to generalize the notion of
conditional independence (Definition A.10) to sets of random variables.

Definition 2.16 (Conditional independence). Let 𝑋 = (𝑥1, … , 𝑥𝑛), 𝑌 = (𝑦1, … , 𝑦𝑚)
and 𝑍 = (𝑧1, … , 𝑧ℓ) be three tuples of random variables. We note the domain of 𝑋 as
𝒳 = 𝒳1 ×⋯×𝒳𝑛, and, similarly, the domains of 𝑌 and 𝑍 are noted respectively 𝒴 and
𝒵 . We say that 𝑋 and 𝑌 are independent given 𝑍 , which we write 𝑋 ⟂𝑃 𝑌 ∣ 𝑍 , if

𝑃(𝑋 , 𝑌 ∣ 𝑍) = 𝑃(𝑋 ∣ 𝑍)𝑃(𝑌 ∣ 𝑍) whenever 𝑃(𝑍) > 0

for any values 𝑋 ∈ 𝒳, 𝑌 ∈ 𝒴, 𝑍 ∈ 𝒵 . When 𝑍 is the empty tuple, we write 𝑋 ⟂𝑃 𝑌 .
Note that here the notation ⟂ receives a subscript 𝑃 to differentiate it with the no-

tion of d-separation. So far, we have not explained how graphs and probability distribu-
tions are related. The following definition indicates the property that we expect from
a graph to represent a probability distribution. Intuitively, the probability distribution
of a random variable should depend only on its parents in the graph.

Definition 2.17 (Markov compatibility, Pearl, 2009, Def. 1.2.2). Let 𝑃 be a probabil-
ity measure on 𝑉 and let 𝐺 = (𝑉 , 𝐸). We say that 𝐺 represents 𝑃 , that 𝐺 and 𝑃 are
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compatible, or that 𝑃 is Markov relative to 𝐺, if

𝑃(𝑣1, … , 𝑣𝑑 ) =
𝑑

∏
𝑖=1

𝑃(𝑣𝑖 ∣ PA𝐺(𝑣𝑖)) ∀(𝑣1, … , 𝑣𝑑 ) ∈ 𝒱

where PA𝐺(𝑣𝑖) denotes the realization of PA𝐺(𝑣 𝑖) in 𝑣1, … , 𝑣𝑑 :

PA𝐺(𝑣𝑖) = (𝑣𝑗 ∣ (𝑣 𝑗 → 𝑣 𝑖) ∈ 𝐸)𝑑𝑗=1 . (2.46)

Finally, the following theorem shows the equivalence between d-separation and
conditional independence. This theorem is the key element that enables causal in-
ference methods to deduce structural causal knowledge (in the form of DAGs) from
statistics computed with observed data (derived from the probability distribution).

Theorem 2.1 (Pearl, 2009, Thm. 1.2.5). Let 𝐺 = (𝑉 , 𝐸), and let 𝑋, 𝑌 and 𝑍 be three tuples
with elements in 𝑉 . The following two statements are true.

(i) If 𝑋 ⟂𝐺 𝑌 ∣ 𝑍 , then 𝑋 ⟂𝑃 𝑌 ∣ 𝑍 for all probability measures 𝑃 compatible with 𝐺.

(ii) If 𝑋 ⟂𝑃 𝑌 ∣ 𝑍 for all probability measures 𝑃 compatible with 𝐺, then 𝑋 ⟂𝐺 𝑌 ∣ 𝑍 .

The first property can be used to validate a causal graph 𝐺, given some data coming
from 𝑃 : d-separation between vertices in 𝐺 implies that the corresponding random vari-
ables will be conditionally independent in any data compatible with 𝐺. If we observe
some dependency, then we can reject this causal graph. The second property indicates
that some conditional independence must be true in all probability measures 𝑃 to be
reflected in a graph 𝐺. This is less convenient, because in practice we have access to
only one set of data coming from one probability measure 𝑃 . This is why it is common
to make the assumption of faithfulness: a probability measure 𝑃 is faithful to 𝐺 if any
conditional independence in 𝑃 implies the corresponding d-separation in 𝐺. This rules
out parallel causal pathways canceling out each other and resulting in the absence of
dependency in observed data.

2.2.3 Causal models

In the previous section, we defined graphs and their relationship with probability dis-
tributions, suggesting the potential to model real-world processes with these two con-
cepts. We could be tempted to think that associating a probability distribution and a
compatible graph (see Definition 2.17) would be all that is needed to infer causation
from data and to represent the three layers of the causal hierarchy presented in Sec-
tion 2.2.1. Such a mathematical construct is named a Bayesian network. Furthermore, if
the edges of the graph represent genuine causal relationships, then it is called a causal
Bayesian network. An important achievement of Pearl and his collaborators is to realize
that such a model is incomplete because it is not sufficient to compute counterfactuals,
the highest layer of the causal hierarchy.

From an epistemological standpoint, this affirmation is not meaningful on its own:
after all, counterfactuals could be a made-up construct with no bearing on reality, and
the fact that Bayesian networks are unable to express them would be unavoidable. To
make an analogy, this would be like adding a new rule to the rules of basketball, specify-
ing that doing a back-flip earns more points, and then claiming that the best basketball
players are bad because they cannot do back-flips. This is not reasonable, unless we are
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ready to justify in which sense back-flips (respectively, counterfactuals) are an essential
aspect of basketball (respectively, causality theory).

The legitimacy of counterfactuals as an important concept to take into account in
causality theory is justified by two facts. First, it is ubiquitous in human reasoning.
Imagining counterfactual scenarios is pervasive in the way we approach problems and
we reason about the consequences of our actions. Second, the concept is a primitive
component of Rubin’s causal model, indicating that even these two competing views
on the formalization of causality agree that counterfactuals should be present in the
theory. If Pearl’s framework is to succeed in providing the scientific community with
a framework applicable even in the fields relying heavily on Rubin’s framework, then
it must include the notion of counterfactuals.

In this section, we define causal models, which are mathematical objects sufficiently
expressive to encompass all three layers of the causal hierarchy. The essential aspect
that differentiates causal models from Bayesian networks is that random variables are
not defined by their conditional probability given their parents, but as the result of a
deterministic function of their parents and some unobserved noise. Any Bayesian net-
work can be easily transformed into an equivalent causal model (although this trans-
formation is not unique), and, moreover, using deterministic functions and unobserved
noise provides the machinery necessary to compute counterfactual probabilities.

Definition 2.18 (Causal model). A causal model, also called structural equation model
(SEM), or structural causal model (SCM) is a tuple 𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ) where

(i) 𝑈 = (𝑢1, … , 𝑢𝑛) is a sequence of random variables called exogenous variables or
unobserved variables, with domains 𝒰1, … ,𝒰𝑛. The domain of 𝑈 is noted 𝒰 =
𝒰1 × ⋯ × 𝒰𝑛.

(ii) 𝑃 is a probability measure on 𝑈 .

(iii) 𝑉 = (𝑣1, … , 𝑣𝑑 ) is a sequence of random variables called endogenous variables or
observed variables, with domains 𝒱1, … , 𝒱𝑑 .

(iv) 𝐺 is a directed acyclic graph with vertices 𝑉 ∪ 𝑈 such that there is no directed
path from 𝑉 to 𝑈 .5

(v) 𝐹 is a sequence (𝑓1, … , 𝑓𝑑 ) where 𝑓𝑖 is a function from the domain of PA𝐺(𝑣 𝑖) to
𝒱𝑖.6

(vi) All 𝑣 𝑖 ∈ 𝑉 are defined as
𝑣 𝑖 = 𝑓𝑖(PA𝐺(𝑣 𝑖)). (2.47)

The distinction between the unobserved variables 𝑈 with a probability distribution
𝑃 , and the observed variables 𝑉 as the result of deterministic functions 𝐹 , suggests a
two-phases procedure to generate data from a causal model:

1. First, sample a realization 𝑈 from the probability distribution 𝑃 .
5The absence of directed path from 𝑉 to 𝑈 is a consequence of the fact that we define 𝐹 in terms of

𝐺. We could avoid this constraint by defining 𝐺 in terms of 𝐹 , however, such a definition introduces more
technical details irrelevant to the intuition of causal models.

6The functions 𝑓𝑖 must be measurable, in a measure-theoretic sense, to ensure that 𝑓𝑖(PA𝐺(𝑣 𝑖)) is a
random variable.
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2. Then, evaluate each function 𝑓𝑖 and assign the result to the corresponding 𝑣 𝑖,
starting with the members of 𝑉 that have parents only in 𝑈 . More precisely, the
functions 𝑓𝑖 are evaluated in a topological order of 𝐺.

This two-step process is what allows causal models to compute counterfactuals, as we
will show in Section 3.2. In the rest of this section, we illustrate the expressive power
of causal models by explaining their relation to each layer of the causal hierarchy.

We should clarify a slight abuse of notation in Definition 2.18. We consider the
input of 𝑓𝑖, that is, PA𝐺(𝑣 𝑖), to be a tuple rather than a set. This implies that the domain
of 𝑓𝑖 is the Cartesian product of the domain of the parents of 𝑣 𝑖. Furthermore, if 𝑣 𝑖
has no parent in 𝐺, it should be a constant random variable (since it is not affected by
exogenous variables in 𝑈 ). In this case, the domain of 𝑓𝑖 is the empty Cartesian product,
which contains only the empty tuple. The value assigned by 𝑓𝑖 to the empty tuple is
the constant value of 𝑣 𝑖. This technical aspect is used in the following definitions.

Observational layer
Since 𝑃 defines a probability distribution on 𝑈 , and since any member of 𝑉 is ultimately
a deterministic function of (a subset of) 𝑈 , we can deduce that a causal model entails
a probability distribution on the endogenous variables 𝑉 . Therefore, any probability
distribution, which is within the realm of the observational layer, can be modeled with
a causal model.

Interventions
Interventions formalize the notion of modification of a system, and allow one to esti-
mate their impact on the remaining variables. In general, any part of a causal model can
be changed (removing or adding edges, changing the distribution, etc.), but in practice
we are more interested in interventions where one variable is forced to take a specific
value. This is represented as graph surgery, where the edges going into a given variable
are removed and that random variable is set to a specific value.

Definition 2.19 (Intervention). Let 𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ) be a causal model. For any
random variable 𝑥 ∈ 𝑉 with domain 𝒳 , and for any 𝑥 ∈ 𝒳 , an intervention do(𝑥 = 𝑥)
defines a new causal model 𝑀𝑥 = (𝑃, 𝑈 , 𝑉 , 𝐺𝑥 , 𝐹𝑥 ) where

• 𝐺𝑥 is 𝐺 but with all edges going into 𝑥 removed.

• 𝐹𝑥 is 𝐹 but where the function giving the value of 𝑥 is replaced by the constant
function ( ) ↦ 𝑥 , where ( ) is the empty tuple.7

This new causal model 𝑀𝑥 induces a new probability distribution over 𝑉 . The proba-
bility of a variable 𝑦 ∈ 𝑉 to take its value in 𝐵 under 𝑀𝑥 is noted 𝑃(𝑦 ∈ 𝐵 ∣ do(𝑥 = 𝑥)),
or 𝑃(𝑦 ∈ 𝐵 ∣ do(𝑥)) when the variable under intervention is clear from the context.

Counterfactuals
The motivating application of counterfactuals is to estimate the impact of a hypothet-
ical intervention, given that the observed course of events is different from this inter-
vention. In the notation developed so far, this would be to estimate the probability

7Since 𝑥 has no parents anymore, the domain of its function is the empty Cartesian product, whose
unique member is the empty tuple.
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distribution of some random variable 𝑦 under the intervention do(𝑥 = 𝑥) given that we
have observed 𝑥 = 𝑥′. It appears that the do(⋅) notation is insufficient to express such
a probability8. The notion of potential outcomes provides the necessary machinery
to define counterfactual expressions. We define potential outcomes as the value of the
random variables 𝑉 in the causal model, given a realization of the unobserved variables
𝑈 = 𝑈 . We can compute this realization using the two-step procedure mentioned after
Definition 2.18. The following two definitions formally express this procedure.

Definition 2.20 (Potential outcome). Given a model 𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ) and a variable
𝑦 ∈ 𝑉 ∪ 𝑈 with domain 𝒴 , the potential outcome function of 𝑦 , or potential response
function of 𝑦 , is a function from 𝒰 to 𝒴 , noted 𝑦𝑀 (𝑈 ), and defined as the value given
by 𝑀 to 𝑦 when we set 𝑈 = 𝑈 , for 𝑈 ∈ 𝒰 . It is recursively defined as

𝑦𝑀 (𝑈 ) = {𝑦 if 𝑦 ∈ 𝑈 with value 𝑦 in 𝑈 ,
𝑓𝑦 (𝑧(1)𝑀 (𝑈 ), … , 𝑧(𝑚)

𝑀 (𝑈 )) if 𝑦 ∈ 𝑉 with PA𝐺(𝑦) = (𝑧(1), … , 𝑧(𝑚)).
The potential outcome (or potential response) 𝑦𝑀 is a random variable defined as 𝑦𝑀 =
𝑦𝑀 (𝑈 ). When considering a model 𝑀𝑥 under intervention do(𝑥 = 𝑥), we note 𝑦𝑀𝑥 =
𝑦𝑥=𝑥 , or 𝑦𝑥 when it is clear from the context that we intervene on 𝑥 . We can see from
Definition 2.18 that 𝑦(𝑈 ) is the same as 𝑦 .

The following definition is adapted from (Bareinboim et al., 2020, Def. 7), where
we generalized their definition to encompass any type of random variable rather than
only discrete variables.

Definition 2.21 (Counterfactuals). A counterfactual expression (or just counterfactual
for short) is a logical expression that involves any number of potential outcomes, pos-
sibly subject to different interventions. Let 𝑀1, … ,𝑀𝑚 be a sequence of models derived
by interventions from a base model 𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ) as in Definition 2.19, and possi-
bly including𝑀 . Let 𝑦 (1), … , 𝑦 (𝑚) be a sequence of random variables in 𝑉 , with domains
𝒴1, … ,𝒴𝑚. A counterfactual expression is a logical expression of the form

𝑦 (1)𝑀1 ∈ 𝐴1 ∧ … ∧ 𝑦 (𝑚)
𝑀𝑚 ∈ 𝐴𝑚

where 𝐴𝑖 ⊆ 𝒴𝑖 for all 𝑖 = 1, … , 𝑚. Its probability can be computed as

𝑃 (𝑦 (1)𝑀1 ∈ 𝐴1, … , 𝑦 (𝑚)
𝑀𝑚 ∈ 𝐴𝑚) = 𝑃(𝑈 ∈ Λ) (2.48)

where Λ is the subset of 𝒰 satisfying the counterfactual expression:

Λ = {𝑈 ∈ 𝒰 ∣ 𝑦 (1)𝑀1(𝑈 ) ∈ 𝐴1, … , 𝑦 (𝑚)
𝑀𝑚 (𝑈 ) ∈ 𝐴𝑚} . (2.49)

As an example, let 𝑡 be the indicator variable of a medical treatment (𝑡 = 1 for
treatment, 𝑡 = 0 for no treatment), 𝑦 be the outcome of the treatment (𝑦 = 1 for
survival, 𝑦 = 0 for death) and 𝑥 be the age of the patient (in years). Suppose that
we gave the treatment to a patient aged 60 who subsequently died. An interesting
question to answer is “Would this patient have survived if we had avoided giving this
treatment?”. This question is formalized as the counterfactual probability

𝑃(𝑦 𝑡=0 = 1 ∣ 𝑦 = 0, 𝑡 = 1, 𝑥 = 60).
8We could be tempted to write 𝑃(𝑦 = 𝑦 ∣ do(𝑥 = 𝑥), 𝑥 = 𝑥 ′), however, in the model under intervention

do(𝑥 = 𝑥), the event 𝑥 = 𝑥 ′ has probability zero, therefore 𝑃(𝑦 = 𝑦 ∣ do(𝑥 = 𝑥), 𝑥 = 𝑥 ′) is undefined.
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We can use the definition of conditional probabilities to convert this expression into a
ratio of counterfactual probabilities as in Definition 2.21:

𝑃(𝑦 𝑡=0 = 1 ∣ 𝑦 = 0, 𝑡 = 1, 𝑥 = 60) = 𝑃(𝑦 𝑡=0 = 1, 𝑦 = 0, 𝑡 = 1, 𝑥 = 60)
𝑃(𝑦 = 0, 𝑡 = 1, 𝑥 = 60) .

In practice, it is often difficult to compute counterfactual probabilities by evaluating
Eqs. (2.48) and (2.49). In fact, the full causal model 𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ) is typically
unknown, and its formal definition serves more as a theoretical basis for developing
causal inference methods than as an object to be fully determined from experiments.
While the distribution of the observed variables 𝑉 and the causal graph 𝐺 can be rea-
sonably inferred from data and expert knowledge, it is often impossible to specify the
background variables 𝑈 and the functional dependencies in 𝐹 . However, to make Def-
inition 2.21 more concrete, we provide a detailed explanation of the computation of
counterfactuals from a fully defined causal model, as well as a numerical example in a
simple system, in Appendix B. In Chapter 6, we explore various approaches to estimate
the probability of counterfactuals from different sets of assumptions.

2.3 Machine learning

Machine learning is the cornerstone of modern data-driven decision-making. As data
sources continue to expand in size and complexity, machine learning procedures have
become indispensable tools for extracting valuable insights, making predictions, and
automating decision processes. This section provides an overview of themachine learn-
ing process, from data preparation to model training and evaluation. We specifically
address the aspects pertinent to the prediction of customer churn in telecom. This
section is inspired by (Bontempi, 2017; De Stefani, 2022).

Fig. 2.7 depicts a representation of the different steps of the machine learning pro-
cedure. We give a brief summary of the different steps:

• Problem formulation: Defining the nature of the problem, such as the dependency
to be modeled, the corresponding outcome variable, and the features to be con-
sidered.

• Experimental design: Specifying how the data will be collected.

• Data collection: Gathering relevant data for the problem following the experi-
mental design

• Data preprocessing: Cleaning, transforming, and preparing the data, handling
missing values and outliers.

• Learning phase: Choosing a model and training it with data, possibly repeating
this process until satisfactory performances are reached. This consists of three
sub-steps:

– Model definition: Choosing the class of machine learning model and its hy-
perparameters.

– Parameter learning: Training the model by adjusting its parameters using
the training data.
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Figure 2.7 The machine learning procedure, from problem formulation to model as-
sessment.

– Model validation: Assessing the model performance on a validation dataset
to compare different model classes or hyperparameter values.

• Model selection: Choosing the best performing model from different candidate
models.

• Model assessment: Evaluating the generalization performance of the model on an
independent test dataset to estimate its real-world performance accurately.

We go through each step of this procedure in Sections 2.3.1 to 2.3.5. Since model
validation during the learning phase and the final model assessment are based on the
same procedures and concepts, both are reviewed in the same subsection. Then, in
Section 2.3.6, we review other important concepts that do not pertain to a specific step
in the machine learning procedure. Finally, in Section 2.3.7, we illustrate the notions
presented here on the example of customer churn prediction by telecom companies.

2.3.1 Problem formulation

The problem formulation step is an important phase of the machine learning process
in which the practitioner defines the practical aspects of the problem, such as the input
and output variables. They give the qualitative objective of the application setting (e.g.,
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reducing customer churn) a quantitative and measurable definition (e.g., minimize the
number of customers ending their subscription during the twomonths following a mar-
keting action). The modeler enumerates the set of data that are available and relevant
to the problem, and the broad class of machine learning procedures to be considered
(supervised learning, unsupervised learning, reinforcement learning, causal inference,
causal discovery, etc.).

2.3.2 Experimental design

In this phase, the practitioner determines how the data samples will be collected and
what part of the input space should be targeted, to ensure that the training data are
representative of the setting in which the machine learning model is intended to be
applied. Let us take as an example the application setting of this thesis, where direct
marketing retention campaigns are repeated every month to address customer churn.
The experimental design consists of specifying what will be used as training and test
data, which customers are going to be contacted, which communication channel is go-
ing to be used, etc. Also, in this example, it is important to create a control group to
assess the causal impact of the campaign and to consider other business-related aspects
such as avoiding contacting the same customers in consecutive campaigns. Note that,
in some cases, the data come from a preexisting dataset (for example, publicly avail-
able online), which does not offer the possibility to influence the experimental design
underlying these data.

2.3.3 Data preprocessing

Once the data have been collected according to the experimental design (or from an
online source), it is very often in a form that is not compatible with the input expected
by the learning algorithm. This incompatibility can be due to the representation of
the data (e.g., unstructured data need to be formatted in tabular form) or to its statis-
tical characteristics (e.g., some models perform better if the data are scaled to the unit
interval). We briefly discuss the most common preprocessing steps.

Missing values
Some parts of the dataset might be missing, due to errors in the measurement process
or the software that collected the data, or for other reasons. There exist a number of
approaches to address this issue. The simplest is to discard the data samples contain-
ing missing values. If the number of missing values is relatively low compared to the
number of samples, this can have only a minor impact on the performances. If this
approach is not feasible (due to a large number of missing values or a low number of
samples in the first place), then the practitioner must impute the missing values. This
can be done with domain knowledge, for example, the information present in other
features might be sufficient to infer a reasonable value for the missing feature. Or, if
the data are following a temporal order, the missing value of a feature can be predicted
from the past values. Lastly, domain-agnostic methods have been developed that are
based on statistical properties of the data and assumptions on the process causing the
missing values (Emmanuel et al., 2021; Ghahramani and Jordan, 1993; Hand, 1981)
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Outliers
Some aspects of the data collection process can lead to erroneous values that are not
typical in the statistical distribution of the rest of the data samples. As an example,
consider data encoded on an accounting keyboard, where there is a 000 key right next
to the 0 key. Pressing by mistake the 000 key instead of 0 scales the number by a factor
of 100. Outliers can be detected using simple thresholds or statistical methods. They
can be handled in the same way as missing values, or by choosing a learning algorithm
robust to outliers (Huber, 2004).

Feature transformation
Some models take as input only certain types of feature or work better when the data
distribution is within a certain scale.

For example, neural networks take as input numerical variables and, therefore, cat-
egorical variables must be encoded in some way. A common approach is to use one-hot
encoding, in which a set of binary variables indicates the value taken by the categorical
feature (Johannemann et al., 2019). Another solution applicable in binary classification
settings is to replace the categorical value by the probability that the target is positive
in the subgroups defined by the categorical values (Micci-Barreca, 2001).

Some learning algorithms benefit from scaling the data to a standard range. This
can be achieved by either transforming the features so that their maximum and mini-
mum values are, respectively, zero and one. It is clear that removing outliers before-
hand is crucial. Another solution is to map the data to a standard normal distribution
by subtracting the mean and dividing by the standard deviation of each feature.

Feature selection
Lastly, feature selection is often used to improve the performance and interpretability
of the model. This consists in selecting only the features relevant for the prediction of
the target variable. This is especially important for some learning algorithms designed
for problems involving a small number of features. This also has implications in causal
analysis, where learning to predict the target variable using only causes of this variable
has interesting generalization properties (Schölkopf et al., 2012). Several methods exist
for feature selection, such as filter methods and wrapper methods (Jović, Brkić, and
Bogunović, 2015), or causal approaches (Bontempi and Flauder, 2015; Bontempi and
Meyer, 2010).

2.3.4 Learning phase

The learning phase consists of a feedback loop composed of three steps: model def-
inition, parametric identification, and model validation. A machine learning model
contains a number of parameters, some of which must be determined manually by the
practitioner (called the hyperparameters), while the other parameters are tuned during
the parametric identification step. For example, the number and width of the hidden
layers of a typical feedforward neural network must be set manually, while the weight
of each link between the neurons is automatically adjusted in the learning phase. The
performance of the trainedmodel is then estimated on a validation set during themodel
validation step, and the whole learning phase can be repeated to evaluate the perfor-
mance of different architectures and hyperparameter values.
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To make the following discussion more precise, we introduce the mathematical no-
tation of themachine learning procedure. The vector of feature is noted 𝑥 = [𝑥1, … , 𝑥𝑑 ],
and the target variable is noted 𝑦 . The domain of 𝑥 , noted 𝒳 , is usually a subset of the
real vectors ℝ𝑑 . The domain of 𝑦 , noted 𝒴 , is either a subset of ℝ in regression tasks or
a finite set in classification tasks (e.g., 𝒴 = {0, 1} in the binary classification task). We
assume the existence of a data-generating process that determines the value of 𝑦 from
the value of 𝑥 , and some unknown noise factor 𝑤 , in the form

𝑦 = 𝑓 (𝑥, 𝑤). (2.50)

This setting is very general, but some models make more restrictive assumptions on
the nature of this process. For example, the assumption of homoscedasticity specifies
that the variance of 𝑤 is the same for all samples. Settings that do not conform to this
assumption are named heteroscedastic. Another typical assumption is that the samples
in the dataset𝐷 = {(𝑥(𝑖), 𝑦 (𝑖))}𝑁𝑖=1 are independent and identically distributed (iid). While
these assumptions have proven useful in developing powerful predictive models, the
validity of these hypotheses should be assessed, and the impact of their possible viola-
tion should be taken into account when training a new model. For example, in direct
marketing campaigns, a customer can discuss their positive or negative experience fol-
lowing a marketing call or email to their friends or family. This is called the spillover
effect, and it leads to the data samples not being independent and identically distributed.
This also occurs in medical studies where an individual influences the decision of other
individuals to take the treatment.

Model definition
The phase of model definition involves selecting the type of model to address the spec-
ified problem. A wide range of models is found in the literature, such as linear models,
decision trees, neural networks, physics-based models, etc. The choice should be based
on the characteristics of the dataset and the requirements of the task. Model definition
also includes configuring themodel’s architecture (this is called structural identification)
and determining factors like the number of layers in a neural network or the depth of
a decision tree (this is called hyperparameter tuning).

In mathematical terms, the practitioner determines the hypothesis functionℳ𝜃 (𝑥),
which is parameterized by a vector 𝜃 ∈ Θ, where Θ is, for example, a subset of ℝ𝑚 for
some integer 𝑚. The hypothesis ℳ𝜃 is constructed in a way that allows one to find
the optimal value of 𝜃 given a training dataset. The method used to find the optimal
parameters and the definition of “optimal” in this context is the subject of the following
two sections.

Parametric identification
This step is the core of the machine learning procedure, where the model tunes the
values of 𝜃 that most closely fit the training set 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖))}𝑁𝑖=1. This is done by
minimizing the empirical risk 𝑅emp, which is defined as

𝑅emp(𝜃) = 1
𝑁

𝑁
∑
𝑖=1

𝐿(𝑦 (𝑖),ℳ𝜃 (𝑥(𝑖))) (2.51)

where the function 𝐿 is called the loss function. Therefore, the objective of parametric
identification is to find the optimal 𝜃∗ ∈ Θ that satisfies the principle of empirical risk
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minimization (ERM):
𝜃∗ = argmin

𝜃∈Θ
𝑅emp(𝜃). (2.52)

This principle expresses the fact that we do not know the true risk, which is the loss
function evaluated in the real setting where the model will be used in practice. The
empirical risk minimization principle consists in estimating this risk using a training
set instead.

The choice of loss function 𝐿 depends on domain knowledge and the type of hy-
pothesis ℳ considered. In regression settings, the mean squared error (MSE) is often
used, and it is defined as

𝐿(𝑦,ℳ𝜃 (𝑥)) = (𝑦 − ℳ𝜃 (𝑥))2. (2.53)

In binary classification settings, the model ℳ𝜃 typically estimates the probability that
the target 𝑦 is positive, given the features 𝑥 : ℳ𝜃 (𝑥) ≈ 𝑃(𝑦 = 1 ∣ 𝑥 = 𝑥). In this setting,
the cross-entropy is commonly used as a loss function, and it is defined as

𝐿(𝑦,ℳ𝜃 (𝑥)) = −𝑦 logℳ𝜃 (𝑥) − (1 − 𝑦) log(1 − ℳ𝜃 (𝑥)). (2.54)

We can show that minimizing this quantity is equivalent to minimizing the likelihood
of the parameters 𝜃 .

Once the loss function is defined, various approaches can be adopted to find the
optimal parameters. In simple settings such as linear regression, an analytical solution
for 𝜃∗ can be found. However, in more complex settings, the absence of an analytical
solution leads to the use of other approaches. Gradient-based methods seek to minimize
the empirical risk by solving the equation

∇𝑅emp(𝜃) = 0 (2.55)

where ∇ is the gradient of the empirical risk with respect to 𝜃 . The gradient descent
method and the Newton method are two gradient-based methods that start with an
initial solution 𝜃0, and repeatedly update the solution by following the first- or second-
order gradient of the loss function, until a fixed point is found in the solution space.

Decision tree (Breiman et al., 1984) is an important algorithm that is not based
on gradient and instead recursively partitions the feature space into smaller regions
(represented by leaves in a tree), until the subset of samples in each region is sufficiently
homogeneous (or another stopping criterion is met). In this case, the loss is used to
quantify the goodness of fit of a given leaf. Although the performance of decision trees
is limited in real-world applications, it has been used with success in ensemble methods
such as random forests (Breiman, 2001) or gradient boosting (Friedman, 2001).

Finally, other approaches that are not gradient-based include support vector ma-
chines (Cortes and Vapnik, 1995), naive Bayes (Rish et al., 2001), nearest neighbors
(T. Cover and Hart, 1967), genetic algorithms (Goldberg, 1989), simulated annealing
(Kirkpatrick, Gelatt Jr, and Vecchi, 1983), particle swarm optimization (Kennedy and
Eberhart, 1995), etc.

Model validation and assessment
Once a candidate model has been found by minimizing the empirical risk, its predic-
tive performance should be evaluated on another dataset. This is to avoid the issue of
overfitting, where the model has learned to predict particularly well the value of the
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target variable in the training set, but in a way that does not generalize well on an-
other dataset, even identically distributed. This is particularly important if the training
set is small or if the model has a large number of parameters. It is common to use
two held-out datasets, the validation set and the test set. The validation set is used to
compare the performance of different model architectures or hyperparameter values
during the model selection step. Therefore, it is used as many times as the learning
phase is repeated. The test set is used after the best model has been selected (which is
the subject of the next section) and serves as a final benchmark. Using a test set rather
than the validation set avoids overfitting the validation set when evaluating a large
number of alternative models during the learning phase. In some settings, the test set
is notably different from the training and validation sets, for example, in the context of
distribution shift, where the model is used in a setting with a data distribution differ-
ent from that of the training samples. We should mention 𝑘-fold cross-validation as an
alternative to a simple held-out validation set, which possesses more interesting statis-
tical properties (Bontempi, 2017, Sec. 7.11.1). It consists of separating the dataset into
𝑘 equal sized subsets called folds, training a model using the last 𝑘 − 1 folds, and using
the first fold as a validation set. Then, the process is repeated using the second fold as
validation set, etc. The average prediction error in all 𝑘 folds is a more representative
estimation of the generalization error of the model than when using a single validation
set.

In this thesis, our main focus is on binary classification, so we will look at metrics
commonly used to evaluate the effectiveness of a binary classification model. Assume
that a model ℳ𝜃 predicts a score ℳ𝜃 (𝑥(𝑖)) for each sample 𝑥(𝑖) in the test set 𝐷te =
{(𝑥(𝑖), 𝑦 (𝑖))}𝑁te𝑖=1. We use a threshold 𝜏 ∈ ℝ to determine the predicted label ̂𝑦 (𝑖) as follows:

̂𝑦 (𝑖) = 𝕀[ℳ𝜃 (𝑥(𝑖)) ≥ 𝜏] (2.56)

where 𝕀[⋅] is the Iverson bracket, equal to one when the expression between brackets
is true, zero otherwise. Then, from the combined value of the true label 𝑦 and the
predicted label ̂𝑦 , we define the confusion matrix (Fawcett, 2006)

CM = [
𝑦 = 0 𝑦 = 1
TN FN ̂𝑦 = 0
FP TP ̂𝑦 = 1] (2.57)

where each element of the matrix indicates the corresponding number of samples in
the test set (therefore, we have TN + FN + TP + FP = 𝑁te). From the confusion matrix,
several evaluation metrics are defined:

Accuracy = TP + TN
𝑁te

(2.58)

Sensitiviy = TP
TP + FN

(2.59)

Specificity = TN
TN + FP

(2.60)

Precision = TP
TP + FP

(2.61)

F1-score = 2TP
2TP + FP + FN

(2.62)

Accuracy is the simplest to interpret, it measures the ratio of correct classifications.
Sensitivity is the proportion of samples correctly predicted to be positive among the
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Figure 2.8 Examples of evaluation curves for binary classification problems.

samples actually positive. It is also named recall, and true positive rate (TPR). Speci-
ficity measures the proportion of samples correctly predicted to be negative among the
samples actually negative. Precision is the number of true positives among the samples
predicted to be positive. Finally, the F1-score, is the harmonic mean of precision and
sensitivity.

The confusion matrix and all performance metrics described above depend on a
specific threshold 𝜏 . It is not always clear how to determine the ideal threshold, and
different models might perform better or worse depending on the threshold. Two com-
mon metrics, the ROC curve and the lift curve, are parametric curves that represent
the performance of a model as a function of the threshold 𝜏 .9 The ROC curve is widely
used in machine learning in general (Fawcett, 2006), while the lift curve is more com-
monly used in churn prediction and online retail (Verbeke, Martens, and Baesens, 2014;
Zhu, Baesens, and Broucke, 2017). When comparing multiple models, it is often use-
ful to compute the area under these curves to obtain a single quantitative measure of
performance that does not rely on the choice of 𝜏 .

To make the following definitions easier, we now note the evaluation metrics de-
fined above as functions of the threshold 𝜏 . The ROC curve is defined as the parametric
curve

ROC(𝜏 ) = (1 − Specificity(𝜏 ), Sensitivity(𝜏 )). (2.63)

An example ROC curve is shown in Fig. 2.8a. A ROC curve approaching the upper
left corner indicates that the model is simultaneously sensitive (i.e., it correctly detects
positive outcomes) and specific (i.e., it avoids labeling negative instances as positive).
The diagonal line serves as a baseline and indicates the expected performance of a
random classifier.

The lift curve is defined as

Lift(𝜏 ) = Precision(𝜏 )
Precision(1) (2.64)

9The evaluation measures presented above (accuracy, sensitivity, etc.) can also be evaluated for dif-
ferent thresholds 𝜏 , resulting in parametric curves. However, their typical usage in the literature assumes
a fixed threshold, while the ROC and lift curves are more commonly computed for all possibles thresholds.
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where Precision(1) designate the precision resulting from classifying all instances as
positive, which boils down to the proportion of positive outcomes. An example lift
curve is shown in Fig. 2.8b. The dashed horizontal line indicates the rate of positive
outcomes in the overall population. The lift curve indicates the expected outcome rate
if we select only a portion of the population according to the ranking provided by
the model. If the lift curve is above the dashed line, e.g., when selecting the top 20%
in Fig. 2.8b, this indicates that this subset of individual displays a higher probability
of positive outcomes than the general population. A good model is able to rank first
individuals with a high probability of a positive outcome, resulting in a higher lift curve.

2.3.5 Model selection

In the last step of the machine learning procedure, the practitioner selects the final
model from the set of models trained and evaluated during the learning phase. This
choice is dictated by different factors, the most important of which is often perfor-
mance on the validation set. But other factors are being increasingly considered, such
as interpretability (Moraffah et al., 2020), fairness (Mehrabi et al., 2021), or energy con-
sumption (García-Martín et al., 2019). When these additional factors are not taken into
account, the obvious strategy is to select the model with the best performance among
the alternatives. This approach is called the winner-takes-all approach. However, it is
well known that combining the predictions of different models can lead to better pre-
dictions than any individual model (Perrone and Cooper, 1995). This is called ensemble
learning. For example, the random forest algorithm (Breiman, 2001) trains an ensemble
of weak learners with low bias and high variance (see Section 2.3.6 for a definition of
these concepts), so that their average predictions have low bias and low variance. En-
semble learning has many more advantages, as described by Sagi and Rokach (2018).
Ensembles of machine learning models have been used successfully in a number of
applications, such as healthcare (Livieris et al., 2019), fraud detection (Lebichot et al.,
2021), or sentiment analysis (Basiri et al., 2021).

2.3.6 Other concepts

In this section, we review important concepts that do not pertain to a specific step in
the machine learning procedure.

Bias and variance of a model
The concepts of bias and variance are fundamental to understand the generalization
abilities of a machine learning model. These concepts, also used in statistics, represent
two different aspects of the quality of the predictions of a model. The bias indicates the
general tendency of the model to predict around the correct value, or, in contrast, the
tendency of the model to predict a value that is systematically offset from the true value
by a fixed amount. The variance quantifies the spread of the distribution of predicted
values, regardless of whether these predictions are biased or not. The two notions are
illustrated in Fig. 2.9.

These notions can be defined mathematically using the notions of expected value
(Definition 2.1) and variance of a distribution (Definition 2.3). The notion of distribu-
tion variance is closely linked but distinct from the notion of variance of an estimator.
Using the notation developed in Section 2.3.4, let us suppose that we aim to model
the relationship between a target variable 𝑦 and a set of covariates 𝑥 , where 𝑦 follows
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Figure 2.9 Illustration of the concept of bias and variance. The model has a high
bias (first row) or a low bias (second row), and a high variance (first column) or a low
variance (second column).

a data-generating process 𝑦 = 𝑓 (𝑥, 𝑤) for some unknown noise factor 𝑤 . Given an
observation 𝑥 = 𝑥 , we want to estimate

𝔼[𝑦 ∣ 𝑥 = 𝑥] = 𝔼[𝑓 (𝑥, 𝑤)]. (2.65)

For simplicity, we note 𝑆(𝑥) = 𝔼[𝑦 ∣ 𝑥 = 𝑥]. Let us assume that we train a model ℳ on
a dataset 𝐷tr. In Section 2.3.4, we noted the parameters 𝜃 of the model after training as
ℳ𝜃 . Here, the value of 𝜃 is irrelevant, but the training set is an important part of the
definitions. Hence, we note the prediction ofℳ trained on𝐷tr for an observation 𝑥 = 𝑥
as ℳ(𝑥, 𝐷tr). Since the training set is the result of a random process, we note it as a
random variable 𝐷tr. The model ℳ can be considered as a function that takes as input
a feature vector and a training set. Applying this function to a fixed 𝑥 and a random
training set𝐷tr, we obtain the sampling distributionℳ(𝑥, 𝐷tr). While the estimand 𝑆(𝑥)
is fixed, its estimation ℳ(𝑥, 𝐷tr) is a random variable, due to the random nature of the
training set. This allows us to define the concept of bias and variance of an estimator
as follows.

Definition 2.22 (Bias of an estimator). The bias of an estimator ℳ(𝑥, 𝐷tr) of 𝑆(𝑥) is
Bias(ℳ, 𝑥) = 𝔼𝐷tr

[ℳ(𝑥, 𝐷tr)] − 𝑆(𝑥). (2.66)

When Bias(ℳ, 𝑥) = 0, we say that the estimator is unbiased (for 𝑥 = 𝑥).
Definition 2.23 (Variance of an estimator). The variance of an estimator ℳ(𝑥, 𝐷tr) of
𝑆(𝑥) is

Var(ℳ, 𝑥) = 𝔼𝐷tr
[(ℳ(𝑥, 𝐷tr) − 𝔼𝐷tr

[ℳ(𝑥, 𝐷tr)])
2] . (2.67)
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Figure 2.10 Overview of the EasyEnsemble methodology.

Class imbalance
Class imbalance designates the difference in the proportion of occurrence of the two
outcomes of the target variable. This is an important notion in churn prediction, since
most customers do not churn. Several methodologies exist to address class imbal-
ance (Batista, Prati, and Monard, 2004), which modify the machine learning proce-
dure described above in different ways. Some intervene during the data preprocess-
ing step, others during the learning phase, and others during the model selection step.
EasyEnsemble belongs to the latter category. In this thesis, we use the EasyEnsemble
methodology (X.-Y. Liu, Wu, and Zhou, 2009), which consists in randomly selecting
several subsets of negative instances (which are assumed to be more numerous), and
pairing each of these subsets with the whole set of positive instances, in such a way
that these new datasets are balanced. Then, a different model is trained on each of
these balanced datasets. The prediction of all the base models is averaged to obtain the
final prediction. This procedure is depicted in Fig. 2.10.

2.3.7 The example of churn prediction

We now illustrate the machine learning procedure presented in the previous sections
on the example of customer churn prediction by telecom companies. This description
is based on the practical experience of data scientists working at Orange Belgium. This
serves as an illustration of the machine learning procedure rather than a rigorous state
of the art of churn prediction. We recommend to the reader interested in the cur-
rent trends in churn prediction the reviews by Coussement, Lessmann, and Verstraeten
(2017), Geiler, Affeldt, and Nadif (2022), Jain, Khunteta, and Srivastava (2021), Tianyuan
and Moro (2021), and Zhu, Baesens, and Broucke (2017).

Problem formulation Customer churn is addressed by conducting a direct market-
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ing campaign using phone calls. Phone operators either suggest a tariff plan that
might bemore suited to the usage of the customer, or propose them a promotional
offer. Then, we consider that a customer churns if they cancel their subscription
in the 2 months following the phone call (or in the 2 months following the cam-
paign if the customer is in the control group). If the customer churns later, the
churn is not attributed to the campaign. To determine which customers should
be called, we train a machine learning model to predict the probability of churn
of all customers based on their characteristics and usage patterns.

Experimental design Historical data from previous campaigns is used to train a ma-
chine learning model to predict the churn outcome based on customer features.
Then, a number of customers with the highest risk of churn (predicted from the
current customer data) are forwarded to the marketing team, which is respon-
sible for creating a control group and ensuring that customers are not called
repeatedly for different campaigns.

Data preprocessing Data preprocessing is an important step in modern businesses
where the same customer data is used for a variety of tasks. As such, the data
must include as many relevant features as possible, possibly transforming exist-
ing ones into a form that is more easily leveraged by learning algorithms. This
includes also the other steps mentioned in Section 2.3.3.

Model definition In this phase, we determine the most relevant class of machine
learning models for churn prediction. Churn prediction is characterized by a low
class separability (i.e., positive and negative outcomes are difficult to discrimi-
nate) and class imbalance (very few churners compared to non-churners), but a
reasonable number of features (a few hundreds) and number of samples (at most
a few millions), which is in the realm of conventional machine learning. Various
benchmarks and internal experiments have shown that gradient boosting and
random forest display the best performance for the task of churn prediction.

Parameter learning, model validation and selection Given that all the practical
aspects of the machine learning procedure specific to churn have been defined
in the previous steps, the following three steps (parameter learning, model vali-
dation and selection) are similar to any other conventional binary classification
problem in machine learning. Typical evaluation metrics for churn prediction
include the lift curve and the ROC curve, presented in Section 2.3.4.

Model assessment While the efficacy of the machine learning model used to predict
churn is assessed on a test set with a ROC curve or a lift curve, as discussed in Sec-
tion 2.3.4, we also compare the churn rate in the control group and in the target
group in the two months following the campaign. This indicates the efficacy of
the campaign in reducing churn, and this metric is more relevant to other stake-
holders in the company than the predictive performance of the machine learning
model.

The metric mentioned in the model assessment step is called the campaign uplift. Since
uplift represents an important business objective, a dedicated approach called uplift
modeling is now favored over conventional churn prediction (Devriendt, Berrevoets,
and Verbeke, 2021). This is the subject of the next section.
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In this chapter, we introduce the two fields of research most closely linked to our con-
tributions, that is, uplift modeling (Section 3.1) and counterfactual identification (Sec-
tion 3.2), and we review the state of the art of both fields.

3.1 Uplift modeling

The concept of uplift, also known as conditional average treatment effect (Gutierrez
and Gérardy, 2016) and heterogeneous treatment effect1 (Athey and G. Imbens, 2016),
has emerged as a important tool within the field of data-driven decision-making. It
allows one to understand the magnitude of the causal effect of an action on an outcome.
Uplift modeling is used primarily in scenarios where the objective is not just predicting
individual outcomes, but identifying the specific individuals who are most likely to
benefit from a particular intervention or treatment. This perspective distinguishes it
from traditional predictive modeling, which focuses on estimating the likelihood of an
outcome for an individual based on input features alone. More precisely, uplift models
quantitatively estimate the impact of the intervention on the probability distribution
of the outcome for each individual.

This section describes the state of the art in uplift modeling, with a focus on the
aspects relevant to this thesis. In Section 3.1.1, we explain the concept of uplift mod-
eling in mathematical terms and outline the assumptions most commonly used. In
Section 3.1.2, we cover the most common approaches for learning uplift. We outline
the evaluation used in the uplift literature in Section 3.1.3. Finally, in Section 3.1.4 we
present the body of research that compares the performance of uplift modeling with re-
spect to traditional predictive modeling, an issue that is receiving increasing attention
in the literature. We refer the reader to the book by Michel, Schnakenburg, and Von
Martens (2019) for an introduction to more technical aspects of uplift modeling, such
as feature selection and transformation, software implementation, a more detailed dis-
cussion of the different uplift models, and other technical considerations.

1The term uplift is commonly employed in the context of marketing or customer management,
whereas conditional average treatment effect and heterogeneous treatment effect are more typical in medical
science, social science, and econometrics literature.
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Table 3.1 The four categories of customers for churn prevention in terms of potential
outcomes.

𝑦0 = 0 𝑦0 = 1
𝑦1 = 0 Sure thing Persuadable
𝑦1 = 1 Do-not-disturb Lost cause

3.1.1 Problem formulation

Notation
In uplift modeling, the random variable 𝑦 represents the binary outcome of interest,
𝑡 is the binary treatment, and 𝑥 is the random vector of the features. We note their
respective domains 𝒴 = {0, 1}, 𝒯 = {0, 1}, and 𝒳 ⊆ ℝ𝑛. Furthermore, we assume
that 𝑥 is continuous and has a probability density function 𝑓𝑥 . In the example of churn
prevention with marketing campaigns, 𝑦 is the churn outcome indicator (𝑦 = 1 when
the customer churns and 𝑦 = 0 when they stay), 𝑡 indicates whether the customer was
contacted during the campaign, and 𝑥 is a set of descriptors used to characterize the
customer in terms of usage patterns, demographics, etc.

Following Definition 2.20, we note the potential outcome of 𝑦 under the interven-
tion do(𝑡 = 𝑡), for 𝑡 = 0, 1, as 𝑦 𝑡 . This is a random variable that indicates the customer’s
churn outcome assuming that treatment 𝑡 = 𝑡 was applied, regardless of whether the
treatment was in reality 𝑡 or 1 − 𝑡 . The objective of uplift modeling is to find customers
who are most sensitive to the treatment, that is, customers for whom the potential
outcomes 𝑦0 and 𝑦1 are the most likely to be different. In fact, we can classify cus-
tomers into four categories, depending on the four possible values of the two potential
outcomes 𝑦0 and 𝑦1. This classification is represented in Table 3.1 for the case of predic-
tion of customer churn. The ideal category of customer to target are the persuadable
customers, since the other customers are either not influenced by the action or are
negatively affected. Since we cannot observe both 𝑦0 and 𝑦1 (an issue called the funda-
mental problem of causal inference, Holland 1986), we cannot directly learn to predict
the customer category from data. Instead, uplift modeling aims to estimate the differ-
ence in the probability of a positive outcome under the treatment scenario (customer is
contacted) and the no-treatment scenario (customer is not contacted). Customers max-
imizing this difference are the most likely to generate a profit increase when contacted.

Since we will often refer to the conditional probability distribution of 𝑦0 and 𝑦1
given the observation 𝑥 = 𝑥 , we use the following notation:

𝑆0(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥) (3.1)

𝑆1(𝑥) = 𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥). (3.2)

The uplift for an individual 𝑥 = 𝑥 is defined as

𝑈 (𝑥) = 𝑆0(𝑥) − 𝑆1(𝑥). (3.3)

We also note the marginal probabilities (i.e., without conditioning on 𝑥 = 𝑥) and the
marginal uplift as

𝑆0 = 𝑃(𝑦0 = 1) (3.4)

𝑆1 = 𝑃(𝑦1 = 1) (3.5)

𝑈 = 𝑆0 − 𝑆1. (3.6)

48



3.1. Uplift modeling

𝑆0 and 𝑆1 can be estimated with the proportion of positive outcomes (e.g., churners)
in the control and target groups respectively. The uplift 𝑈 , called average treatment
effect (ATE) in the literature (Pearl, 2017), can be interpreted as the causal effect of
the campaign on the overall population, or the expected causal effect on a randomly
selected individual, since it is the expected value of 𝑈 (𝑥) over the distribution of 𝑥 :

𝑈 = 𝑃(𝑦0 = 1) − 𝑃(𝑦1 = 1) (3.7)

= ∫(𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥))𝑓𝑥 (𝑥) d𝑥 (3.8)

= 𝔼[𝑆0(𝑥) − 𝑆1(𝑥)] = 𝔼[𝑈 (𝑥)]. (3.9)

Note that, for example, in the literature pertaining to retail or online advertisements,
the uplift is defined as 𝑈 = 𝑆1 − 𝑆0, and similarly 𝑈 (𝑥) = 𝑆1(𝑥) − 𝑆0(𝑥). This choice de-
pends on whether the probability of the (positive) outcome 𝑦 = 1 should be minimized
(e.g., in churn prevention) or maximized (e.g., in sales). The uplift is then defined so
that a positive uplift corresponds to a beneficial outcome. Since we apply our results
primarily to churn prevention, we use the convention 𝑈 = 𝑆0 − 𝑆1.

Assumptions
We assume that the random variables 𝑥 , 𝑦 , and 𝑡 are part of a causal model 𝑀 =
(𝑃,𝑊 , 𝑉 , 𝐺, 𝐹 ) (see Definition 2.18), of which we only know 𝑉 = {𝑦, 𝑡} ∪ 𝑥 . The latent
variables 𝑊 2 and the functions 𝐹 are unknown. We do not know the graph 𝐺 either;
however, we assume that the treatment 𝑡 does not influence the features 𝑥 (i.e., there
is no path from 𝑡 to any member of 𝑥 in 𝐺). This assumption is often made, but rarely
stated in the literature, and it implies that 𝑥do(𝑡=𝑡) = 𝑥 for any 𝑡 . The probabilities 𝑆0(𝑥)
and 𝑆1(𝑥) cannot be estimated directly from data without further assumptions, because
they involve the potential outcomes 𝑦0 and 𝑦1, while real-world data consist of sam-
ples of (𝑥, 𝑦 , 𝑡). Some uplift models are designed for experimental data, while others
are designed for observational data. This distinction has an impact on how 𝑆0(𝑥) and
𝑆1(𝑥) can be estimated.

Definition 3.1 (Experimental data). A dataset 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 of iid samples of
(𝑥, 𝑦 , 𝑡) is said to be experimental data if 𝑡 has no parent in the causal graph 𝐺 and if
0 < 𝑃(𝑡 = 1) < 1. We also say that this is a randomized controlled trial. Otherwise, the
dataset is said to be observational data.

The requirement that 𝑡 has no parent in 𝐺 is usually implemented by assigning the
treatment at random, which corresponds to the graph surgery mentioned in Defini-
tion 2.19. Experimental data implies that

𝑦 𝑡 ⟂ 𝑡 for all 𝑡 ∈ {0, 1}. (3.10)

This translates the intuition that the potential outcome of 𝑦 , had the treatment 𝑡 = 𝑡
been given, does not depend on the actual assignment of treatment. This precludes
unobserved confounders that determine both the assignment of treatment and the out-
come. The fact that Eq. (3.10) holds with experimental data can be proven from the

2we use 𝑊 instead of 𝑈 as in Definition 2.18 for the latent variables to avoid confusion with the
notation for the uplift 𝑈 (𝑥).
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rules of do-calculus (Pearl, 2009, Thm. 3.4.1), or directly from Definition 2.20, however,
we will accept this result without proof for the sake of brevity.

Experimental data is not always available because randomizing the treatment as-
signment can be costly or unethical (e.g., forcing people to smoke to study the impact
of smoking on lung cancer), but learning causal effects in an observational setting is
still possible. The required assumption is called unconfoundedness3 (Pearl, 2009, Def.
9.2.9).

Definition 3.2 (Unconfoundedness). A variable 𝑦 is unconfounded with respect to 𝑡
given 𝑥 if, for all 𝑦 ∈ 𝒴 , 𝑡 ∈ 𝒯 and 𝑥𝒳 ,

𝑃(𝑦 𝑡 = 𝑦 ∣ 𝑥 = 𝑥) = 𝑃(𝑦 = 𝑦 ∣ 𝑡 = 𝑡, 𝑥 = 𝑥) (3.11)

Or, alternatively, if for all 𝑥 ∈ 𝒳 ,

𝑦 𝑡 ⟂ 𝑡 ∣ 𝑥 = 𝑥. (3.12)

In this context, the vector of features 𝑥 is called the adjustment set. We also say that
𝑥 satisfies the rule 2 of do-calculus (Pearl, 2009, Thm. 3.4.1), or the back-door criterion4

(Pearl, 2009, Def. 3.3.1).

Any dataset where the treatment is randomized (i.e., experimental data) is uncon-
founded, but observational data can also be unconfounded given the right adjustment
set 𝑥 . The equivalence of the two expressions in Definition 3.2 follows from

𝑃(𝑦 𝑡 = 𝑦 ∣ 𝑥 = 𝑥) = 𝑃(𝑦 𝑡 = 𝑦 ∣ 𝑡 = 𝑡, 𝑥 = 𝑥) (by Eq. 3.12)

= 𝑃(𝑦 = 𝑦 ∣ 𝑡 = 𝑡, 𝑥 = 𝑥). (by Definition 2.20)

This last equality follows from Definition 2.20, however we omit the details of this
derivation for brevity. Unconfoundedness allows the estimation of the scores 𝑆0(𝑥)
and 𝑆1(𝑥) from data, since, in this case, we have

𝑆0(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥) = 𝑃(𝑦 = 1 ∣ 𝑡 = 0, 𝑥 = 𝑥), (3.13)

and similarly for 𝑆1(𝑥).

3.1.2 Uplift models

In this section, we describe the uplift models that are used most often in the literature.
For a more extensive comparison and description of existing uplift models, see the
review by Kayaalp (2017), the book by Michel, Schnakenburg, and Von Martens (2019,
Ch. 3), or the extensive benchmarks by Devriendt, Moldovan, and Verbeke (2018) and
Rößler and Schoder (2022). In this section, we denote that ℳ(𝑥) is a model trained to
predict some quantity 𝑔(𝑥) as ℳ(𝑥) ≈ 𝑔(𝑥).

3Also called ignorability by Rosenbaum and Donald B Rubin (1983), exogeneity by Pearl (2009), or
conditional independence assumption by Gutierrez and Gérardy (2016).

4The back-door criterion is equivalent to the rule 2 of do-calculus with the additional assumption that
there is no causal path from 𝑡 to 𝑥 , which is always the case in our setting.
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T-learner
This approach, called T-learner in Künzel et al. (2019), is often used as a baseline, and
consists in modeling the probabilities 𝑆0(𝑥) and 𝑆1(𝑥) separately with two independent
predictive models:

ℳ0(𝑥) ≈ 𝑆0(𝑥) and ℳ1(𝑥) ≈ 𝑆1(𝑥).
The two probability estimators ℳ0 and ℳ1 can be, for example, logistic regression, or
any conventional machine learning model. The uplift is then estimated as

𝑈 (𝑥) ≈ ℳ0(𝑥) − ℳ1(𝑥). (3.14)

The two predictors are trained, respectively, on the control and target group datasets.
Since they are trained independently, they can have different probability calibrations,
and, also, the variance of the uplift estimator is greater than the variance of the indi-
vidual predictors ℳ0(𝑥),ℳ1(𝑥), due to the subtraction in Eq. (3.14). See Radcliffe and
Surry (2011) for an illustration of these problems.

S-learner
A related approach, called the S-learner in Künzel et al. (2019), is based on a single
predictive model. The treatment indicator 𝑡 is included in the vector of input features
of the predictive model, along with 𝑥 :

ℳ(𝑥, 0) ≈ 𝑆0(𝑥) and ℳ(𝑥, 1) ≈ 𝑆1(𝑥).
Here, the notation ℳ(𝑥, 𝑡) indicates that the value of the treatment 𝑡 is added as an
input feature of the model, and should not be confused with the notation ℳ(𝑥, 𝐷tr)
that indicates that the ℳ is trained on a training set 𝐷tr.

The customers are then ranked according to their estimated uplift, again obtained
by subtraction:

𝑈 (𝑥) ≈ ℳ(𝑥, 0) − ℳ(𝑥, 1). (3.15)

This approach avoids the problems of the T-learner by reducing the independence of the
estimations of the treated and control probabilities. The drawback is that the treatment
𝑡 is considered a priori as important as any other feature in 𝑥 . If 𝑡 is considered not
informative by the learner (e.g., as a result of a feature selection step), the model will
be ineffective in modeling uplift.

Modified target variable
Presented in Jaskowski and Jaroszewicz (2012), this approach defines a new target vari-
able 𝑧 as

𝑧 = 𝑦(1 − 𝑡) + (1 − 𝑦)𝑡.
In the setting of customer churn, the variable 𝑧 is equal to one when the customer is in
the control group and churns or is in the target group and does not churn. A customer
for which 𝑧 = 1 is either a persuadable, a sure thing, or a lost cause (positive or null
uplift). Similarly, a customer for which 𝑧 = 0 is either a do-not-disturb, a sure thing, or a
lost cause (negative or null uplift). Jaskowski and Jaroszewicz (2012) showed that in the
case of a balanced randomized experiment (i.e., such that 𝑃(𝑡 = 1) = 𝑃(𝑡 = 0) = 0.5),
we have

𝑈 (𝑥) = 2𝑃(𝑧 ∣ 𝑥 = 𝑥) − 1. (3.16)
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Any model of the conditional probability of 𝑧 is thus able to predict the uplift. This
model assumes that 𝑃(𝑡 = 1) = 𝑃(𝑡 = 0) = 0.5, which is not always the case in real-
world applications.

In a variation of the modified target approach, called Lai’s generalization (Kane,
V. S. Lo, and Zheng, 2014), a classification model learns to predict the joint value of the
outcome and the treatment, i.e., the new target variable is

𝑧 =
⎧⎪
⎨⎪
⎩

0 if 𝑦 = 0 and 𝑡 = 0
1 if 𝑦 = 0 and 𝑡 = 1
2 if 𝑦 = 1 and 𝑡 = 0
3 if 𝑦 = 1 and 𝑡 = 1.

Then the uplift is estimated as

𝑈 (𝑥) ≈ 𝑃(𝑧 = 0)
𝑃(𝑡 = 0) + 𝑃(𝑧 = 1)

𝑃(𝑡 = 1) − 𝑃(𝑧 = 2)
𝑃(𝑡 = 0) − 𝑃(𝑧 = 3)

𝑃(𝑡 = 1) . (3.17)

This has the advantage of being valid even with an imbalanced probability of treatment,
but suffers from volatile performance (Devriendt, Moldovan, and Verbeke, 2018).

Tree-based models
This approach builds a model that predicts uplift directly, often inspired by a conven-
tional machine learning algorithm. Several strategies have been proposed in the litera-
ture. For example, Athey and G. Imbens (2016) propose a modification of the classifica-
tion and regression tree (CART) algorithm to learn uplift. Rzepakowski and Jaroszewicz
(2012) use an information-theoretic criterion to build an uplift classification tree, which
is naturally extended to a random forest (Breiman, 2001) by Guelman, Guillén, and
Pérez-Marín (2015). More precisely, the split criterion when constructing a tree node is
chosen to maximize the divergence of the target class distribution between the treated
and control populations. The distribution divergence is estimated using information-
theoretic measures such as the Kullback-Leibler distance (Csiszár and Shields, 2004),
the Euclidian distance (L. Lee, 2000), or the chi-squared divergence (Jaroszewicz and
Simovici, 2001). Other approaches exist, such as the difference in difference approach
(B. Hansotia and Brad Rukstales, 2002), or the Bayesian additive regression trees (Hahn,
Murray, and Carvalho, 2020).

X-learner
Künzel et al. (2019) propose a new algorithm for uplift modeling called X-learner. Like
the T-learner or the modified target approach, this algorithm relies on a base learner,
which can be any conventional machine learning model. X-learner is able to use infor-
mation from the control group to improve the estimator for the target group, and vice
versa. First, two models ℳ0(𝑥) and ℳ1(𝑥) are trained to predict, respectively, 𝑆0(𝑥)
and 𝑆1(𝑥). This step is identical to the T-learner. Then, two models ℳ′0(𝑥) and ℳ′1(𝑥)
are trained to predict, respectively, 𝑃(ℳ1(𝑥) − 𝑦0 ∣ 𝑥 = 𝑥) and 𝑃(𝑦1 − ℳ0(𝑥) ∣ 𝑥 = 𝑥).
The final prediction is a weighted average of the two final models:

𝑈 (𝑥) ≈ 𝑔(𝑥)ℳ′0(𝑥) + (1 − 𝑔(𝑥))ℳ′1(𝑥)
where 𝑔(𝑥) is a weighting function. By using parametric weighting, the average model
gives more importance to the predictions of ℳ′1 or ℳ′0 where those models are more
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confident. The X-learner approach can be used with observational data by using a
propensity score as the weighting function 𝑔(𝑥), that is, by fitting

𝑔(𝑥) ≈ 𝑃(𝑡 = 1 ∣ 𝑥 = 𝑥).

Note that this approach was originally designed for a continuous target 𝑦 , and thus
may perform poorly when applied to a binary target. No assumption is required for
the validity of this model, but Künzel et al. (2019) indicate that the X-learner does not
perform well when the uplift is close to zero. Also, this algorithm is designed to take
advantage of highly unbalanced target and control groups. Künzel et al. (2019) provide
theoretical conditions that guarantee a fast convergence rate.

Other approaches
Shalit, Johansson, and Sontag (2017) propose a neural network architecture designed
for uplift modeling, inspired from the domain adaptation literature (Ganin et al., 2016).
The probabilities of the outcomes 𝑦0 and 𝑦1 are learned by two separate heads of the
neural network sharing a common base, which leverage the advantages of both the
S-learner (the predictors are calibrated similarly, and all the data is used to learn both
scores) and the T-learner (the impact of the treatment is taken into account even with
numerous features).

Louizos et al. (2017) present a new approach to compute causal effects from observa-
tional data, called the causal effect variational autoencoder (CEVAE). It is an adaptation
of the variational autoencoder (Kingma and Welling, 2013), which learns a latent rep-
resentation of the input features using variational inference. Variational autoencoders
are widely used in various domains, such as image recognition or time series predic-
tion, due to their predictive power and the few assumptions they make on the data-
generating process. CEVAE builds upon this method by representing the causal effect
and the (possibly hidden) confounders as a latent space. They achieve state-of-the-art
performance while being more robust than other uplift models.

Lastly, Zaniewicz and Jaroszewicz (2013) adapt the support vector machine (SVM),
a well-known machine learning algorithm (Cortes and Vapnik, 1995), to predict uplift.
They outperform the baseline methods and show performance similar to that of other
state-of-the-art uplift models on their benchmark.

3.1.3 Performance evaluation

Various evaluation measures exist to quantify the performance of uplift models. All
of them measure, in some way, the ability of the evaluated model to rank individuals
according to their uplift. Since we do not have access to the true uplift of a given
individual, these curves rely on the randomization of the treatment assignment and on
the law of large numbers to estimate the average uplift of a subset of the population.
The two most common evaluation measures are the uplift curve and the Qini curve.
These two curves have been defined in different ways in the literature; see (Devriendt,
Van Belle, et al., 2020) for a comparison. We will focus on the most common definitions.
Other measures have been discussed in the literature, but they have not yet gained
broad acceptance. Among those, we present the profit measure by Verbeke, Olaya,
Guerry, et al. (2022), the regret measure by Fernández-Loria and Provost (2022b), and
we mention a few other related measures.
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Uplift curve
To compute the uplift curve, the uplift model ℳ is used to predict a score for each sam-
ple in a test data set𝐷te = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1. The curve is then estimated by comparing
the outcome rate in the control and target groups among the individuals with the high-
est scores. In the framework established by Devriendt, Van Belle, et al. (2020), this
definition corresponds to the absolute, joint uplift curve (Eq. (8) in their paper). Intu-
itively, the uplift curve indicates the number of additional favorable outcomes that can
be attributed to the causal effect of the action, as a function of the number of targeted
individuals.

Definition 3.3 (Uplift curve). Let 𝐷te = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 be a data set of 𝑁 iid re-
alizations of (𝑥, 𝑦 , 𝑡), where the treatment assignment 𝑡 is randomized. Let ℳ be a
model trained on a data set 𝐷tr, and let 𝐷te be sorted in decreasing order according to
ℳ: for any 𝑖 < 𝑗, we have ℳ(𝑥(𝑖), 𝐷tr) ≥ ℳ(𝑥(𝑗), 𝐷tr). The uplift curve is defined for
𝑘 ∈ {1, … , 𝑁 } as

Uplift(𝑘, 𝐷tr, 𝐷te) = ( 𝑟0(𝑘)
𝑛0(𝑘)

− 𝑟1(𝑘)
𝑛1(𝑘)

) 𝑘 (3.18)

where the following notation is used, with 𝑡 = 0, 1:

𝑟𝑡(𝑘) =
𝑘
∑
𝑖=1

𝕀[𝑦 (𝑖) = 1 and 𝑡(𝑖) = 𝑡] and 𝑛𝑡(𝑘) =
𝑘
∑
𝑖=1

𝕀[𝑡(𝑖) = 𝑡]. (3.19)

In the case where 𝑟𝑡(𝑘) = 𝑛𝑡(𝑘) = 0, the quotient 𝑟𝑡(𝑘)/𝑛𝑡(𝑘) is defined as 0.
In this definition, the quantity 𝑛𝑡(𝑘) represents the number of individuals with treat-

ment 𝑡 = 𝑡 among the 𝑘 individuals with the highest scores. The quantity 𝑟𝑡(𝑘) repre-
sents the number of positive outcomes (that is, such that 𝑦 = 1) with treatment 𝑡 = 𝑡
among the 𝑘 individuals with the highest scores. An example of uplift curve is given
in Fig. 3.1a. Note that the uplift curve reaches the population uplift 𝑈𝑁 = (𝑆0 − 𝑆1)𝑁
when 𝑘 = 𝑁 . Also, for some values of 𝑘 < 𝑁 , the uplift curve may be higher than
𝑈𝑁 . This indicates that some of the customers lower in the ranking are do-not-disturb
customers (see Table 3.1), whose negative reaction to the campaign create a negative
slope in the curve.

Qini curve
The Qini curve is also commonly used in the literature. We present the joint, absolute
definition of the Qini curve in the framework presented by Devriendt, Van Belle, et
al. (2020). Intuitively, this curve indicates the number of additional positive outcomes
that can be attributed to the causal effect of the action, if we were to conduct a new
randomized campaign (i.e., with target and control groups), as a function of the number
of individuals included in this new campaign.

Definition 3.4 (Qini curve). Let𝐷tr, 𝐷te andℳ be a training set, a test set, and a model
as defined in Definition 3.3. The Qini curve is defined for 𝑘 ∈ {1, … , 𝑁 } as

Qini(𝑘, 𝐷tr, 𝐷te) = 𝑟0(𝑘) − 𝑟1(𝑘)
𝑛0(𝑘)
𝑛1(𝑘)

(3.20)

where 𝑟0(𝑘), 𝑟1(𝑘), 𝑛0(𝑘) and 𝑛1(𝑘) are defined as in Definition 3.3. When 𝑛1(𝑘) = 0, the
quotient 𝑛0(𝑘)/𝑛1(𝑘) is defined as 0.

54



3.1. Uplift modeling

0 200 400 600 800 1,0000

100

200

300
𝑈𝑁

𝑘

U
pl
ift

Uplift curve
Random selection

(a) Example of uplift curve.

0 200 400 600 800 1,0000

20

40

60

𝑘

Q
in
i

Qini curve
Random selection

(b) Example of Qini curve.

Figure 3.1 Example of uplift and Qini curves for a population of 𝑁 = 1000 individuals
and a treatment rate of 20%. The dashed lines represent the curves resulting from
selecting individuals at random. (a) The average uplift is 3.35%, therefore, the right
end of the uplift curve reaches 𝑈𝑁 = 335. The uplift curve can go higher than the
average uplift, reaching 340 when selecting 65% of the individuals. (b) The Qini curve
is, on average, proportional to the uplift curve by a factor equal to the proportion of
individuals assigned to the control group, 𝑃(𝑡 = 1).

It is easy to see that

Qini(𝑘, 𝐷tr, 𝐷te) =
𝑛0(𝑘)
𝑘 Uplift(𝑘, 𝐷tr, 𝐷te). (3.21)

This means that, on average, the uplift curve and the Qini curve are related by a factor
equal to the proportion of individuals assigned to the control group. An example of
Qini curve is shown in Fig. 3.1b.

Measure of profit
As illustrated by Gubela and Lessmann (2021), the conventional uplift curve presented
in Definition 3.3 does not take into account the cost and benefits associated with each
individual and with the action 𝑡 = 1. The most general measure, in our opinion, for
evaluating the performance of uplift models while taking into account costs and bene-
fits was proposed by Verbeke, Olaya, Guerry, et al. (2022). Its generality stems from the
fact that it is not tied to a specific operational setting (e.g., churn prediction or online re-
tail). This is achieved by defining a cost-benefit matrix (see below) that can effectively
represent the diverse range of settings characterized by cost sensitivity.

Let 𝐹𝐷tr𝑦𝑡 be the cumulative distribution function of the score from amodelℳ trained
on a data set𝐷tr, conditional on a particular realization of the potential outcome 𝑦 𝑡 = 𝑦 :

𝐹𝐷tr𝑦𝑡 (𝜏 ) = 𝑃(ℳ(𝑥, 𝐷tr) < 𝜏 ∣ 𝑦 𝑡 = 𝑦). (3.22)

In this expression, the probability is taken over the distribution of 𝑥 . The condition
𝑦 𝑡 = 𝑦 indicates that we consider individuals who, when applying the treatment 𝑡 = 𝑡 ,
have an outcome 𝑦 𝑡 = 𝑦 . Then, we define the causal confusion matrix CF(𝜏 , 𝐷tr) for a

55



3. State of the art

threshold 𝜏 as

CF(𝜏 , 𝐷tr) = [
𝑡 = 0 𝑡 = 1

(1 − 𝑆0)𝐹𝐷tr00 (𝜏 ) (1 − 𝑆1)(1 − 𝐹𝐷tr01 (𝜏 )) 𝑦 = 0
𝑆0𝐹𝐷tr10 (𝜏 ) 𝑆1(1 − 𝐹𝐷tr11 (𝜏 )) 𝑦 = 1] (3.23)

Intuitively, this matrix indicates the expected proportion of positive and negative out-
comes in the population if we use a threshold 𝜏 to determine which individuals should
be targeted. The rows of the matrix indicate positive and negative outcomes, while
the columns specify whether these outcomes belong to the targeted or non-targeted
groups. As discussed by Verbeke, Olaya, Berrevoets, et al. (2021), the performance of a
model should be measured relative to a baseline scenario, rather than in absolute terms.
That is because, even when no action is carried out, an outcome will always occur, and
therefore, the success of an action should be compared with the outcome resulting from
the absence of action. This consideration leads us to define the causal effect matrix E
as

E(𝜏 , 𝐷tr) = CF(𝜏 , 𝐷tr) − CF(∞, 𝐷tr) (3.24)

with CF(∞, 𝐷tr) defined as

CF(∞, 𝐷tr) = [1 − 𝑆0 0
𝑆0 0] . (3.25)

The matrix CF(∞, 𝐷tr) indicates the outcome distribution assuming that nobody is tar-
geted, which corresponds to the outcome distribution in the control group. Finally, we
define a cost-benefit matrix CB that expresses the sum of the costs and benefits for the
two possible actions (𝑡 = 0 or 𝑡 = 1) and the two possible outcomes (𝑦 = 0 or 𝑦 = 1).
Here, the cost-benefit matrix is the same for all individuals. It is noted

CB = [
𝑡 = 0 𝑡 = 1
CB00 CB01 𝑦 = 0
CB10 CB11 𝑦 = 1] (3.26)

For ease of notation in the following definition, we note the sum of the elements in
the componentwise product of two matrices 𝐴 and 𝐵 (also called the Frobenius inner
product) as 𝐴 ⊕ 𝐵:

𝐴 ⊕ 𝐵 = ∑
𝑖𝑗

𝐴𝑖𝑗𝐵𝑖𝑗 . (3.27)

This operation satisfies the same axioms as the inner product between two vectors.

Definition 3.5 (Verbeke, Olaya, Guerry, et al., 2022). The measure of causal profit
CP(𝜏 , 𝐷tr), for a threshold 𝜏 , a training set 𝐷tr, and a constant cost-benefit matrix CB,
is defined as

CP(𝜏 , 𝐷tr) = E(𝜏 , 𝐷tr) ⊕ CB . (3.28)

Measure of regret
Fernández-Loria and Provost (2022b) discuss the conceptual differences between causal
effect estimation (i.e., uplift modeling) and causal classification (i.e., selecting persuad-
able customers). In particular, they express the objective of causal classification to be
the minimization of the expected difference between the best potential outcome and
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the potential outcome induced by the evaluated model. If we assume that all individ-
uals with positive uplift should be targeted, then the ideal treatment can be expressed
as 𝑡∗ = 𝕀[𝑈 (𝑥) > 0], and the corresponding potential outcome is noted 𝑦 𝑡∗ . Similarly,
using a model ℳ as a decision rule with a threshold of zero results in a treatment as-
signment 𝑡ℳ(𝐷tr) = 𝕀[ℳ(𝑥, 𝐷tr) > 0], and the corresponding potential outcome is
𝑦 𝑡ℳ (𝐷tr). The evaluation measure proposed by Fernández-Loria and Provost (2022b) is
expressed as

Regret(ℳ,𝐷tr) = 𝔼[𝑦 𝑡ℳ (𝐷tr) − 𝑦 𝑡∗]. (3.29)

One can see this approach as the converse of that adopted by Verbeke, Olaya, Guerry,
et al. (2022) presented in the previous section: rather than comparing the factual out-
come with the outcome resulting from a baseline scenario (such as taking no action),
they compare the factual outcome with the best potential outcome that could be taken.
However, the baseline profit and the profit generated from the best potential outcomes
are independent of the prediction model ℳ, therefore their values are irrelevant to
optimize ℳ.

Other measures
A. Li and Pearl (2019) define the benefit in terms of the counterfactual category of the
customer: persuadable, sure thing, lost cause, or do-not-disturb (see Table 3.1). They
allow for arbitrary costs for the four different counterfactual categories, and one can
view the theoretical framework of Verbeke, Olaya, Guerry, et al. (2022) as a basis to
determine the cost coefficients used by A. Li and Pearl (2019). Gubela, Lessmann, and
Jaroszewicz (2020) provide another measure of the profit of a marketing campaign. The
formula they propose is tailored to the specific aspects of customer retention (cost of
contacting a customer, cost of the incentive, etc.), but does not consider benefits that
can vary across individuals. Haupt and Lessmann (2022) provide a cost-sensitive mea-
sure of the profit generated by individuals in the context of customer targeting. They
also discuss how to incorporate cost sensitivity into the uplift modeling framework.
Lastly, Gubela and Lessmann (2021) propose value-driven evaluation metrics for mar-
keting campaigns, taking into account the trade-off between maximizing uplift and
maximizing revenues. Their metric aggregates the estimated uplift and the expected
value of individuals into a score used to either rank individuals or evaluate a ranking
model.

3.1.4 Predictive versus uplift modeling

Uplift modeling, despite its sound theoretical foundation, has faced challenges to show
in practice a consistent advantage over classical predictive modeling. In this section,
we present the body research that considers this issue.

Ascarza (2018), Devriendt, Berrevoets, and Verbeke (2021), and Wijaya et al. (2021)
are the first papers to compare uplift modeling with the predictive approach. Their
experimental results suggest that the uplift approach is superior for preventing churn,
although their findings are only empirical, and based on a small number of datasets.

Fernández-Loria and Provost (2022a) argue that the true objective is to find persuad-
able individuals (as defined in Table 3.1), a task named causal classification, and that
uplift modeling is only one of the possible ways to tackle causal classification. They
derived an analytical criterion expressing when a model outperforms another in terms
of classification error, which depends upon the bias and the variance of both models.
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Their criterion has twomajor conceptual differences from the profit measure developed
by Verbeke et al. (see Definition 3.5). First, it is conditional on a specific realization
𝑥 = 𝑥 , while the profit measure takes into account the whole population. This is es-
sential when the goal is to draw general conclusions about the population, rather than
about specific individuals. Second, Provost’s criterion is based on the probability that
a model differs from the Bayes-optimal classifier. However, in practice, an imperfect
model might have a large classification error (with respect to the Bayes-optimal classi-
fier) but no loss in terms of profit, if the selected individuals generate a profit close to
that of the individuals selected by the Bayes-optimal classifier.

Fernández-Loria and Provost (2022a,b) argue that the predictive approach can out-
perform the uplift approach under four different conditions:

1. When the positive outcomes are very rare;

2. When the outcomes are difficult to predict;

3. When the treatment effect (𝑆0 − 𝑆1) is small;

4. Or when the treatment is correlated with the outcome.

Condition 1 translates the intuition that if 𝑆1 is always close to zero, then the uplift,
which is 𝑆0 − 𝑆1, will be correlated with the outcome 𝑆0. The analysis by Fernández-
Loria and Provost is based on themonotonicity assumption, i.e., that there is no negative
individual causal effect (no do-not-disturb customers). Also, their analysis is based on
the area under the ROC curve, which might not always represent the objective of a
campaign.

Finally, Alaa and Schaar (2018) investigate the maximum performance of an uplift
model using observational data, and provide guidelines to achieve the maximum per-
formances. In the case of experimental data, which is the setting on which this thesis
focuses, their results reduce to the conventional loss of a supervised learning algorithm.

3.2 Counterfactual identification

Counterfactual statements (or counterfactuals for short) concern the potential of events
in situations different from the factual state of the world. An example of counterfactual
statement is ”I got no effect since I made no action, but something would have hap-
pened had I acted”. Counterfactuals are used in many fields, ranging from algorithmic
recourse (Karimi, Schölkopf, and Valera, 2021) to online advertisement and customer
relationship management (A. Li and Pearl, 2019).

As an example, consider a company that plans to use direct marketing actions to
prevent customers from churning. As we discussed in Section 3.1 (see Table 3.1), the
behavior of customers in reaction to the two possible actions (contact or not) can be
described in terms of counterfactual statements (Devriendt, Berrevoets, and Verbeke,
2021):

• Sure thing: customer not churning regardless of the action.

• Persuadable: customer churning only if not contacted.

• Do-not-disturb: customer churning only if contacted.

• Lost cause: customer churning regardless of the action.
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Formula Name

𝑃(𝑦0 = 0 ∣ 𝑡 = 1, 𝑦 = 1) Probability of necessity (PN)
𝑃(𝑦1 = 1 ∣ 𝑡 = 0, 𝑦 = 0) Probability of sufficiency (PS)
𝑃(𝑦0 = 0 ∣ 𝑦 = 1) Probability of disablement (PD)
𝑃(𝑦1 = 1 ∣ 𝑦 = 0) Probability of enablement (PE)
𝑃(𝑦0 = 0, 𝑦1 = 1) Probability of necessity and sufficiency (PNS), or

probability of being a do-not-disturb customer
𝑃(𝑦0 = 1, 𝑦1 = 0) Probability of being a persuadable customer
𝑃(𝑦0 = 0, 𝑦1 = 0) Probability of being a sure thing customer
𝑃(𝑦0 = 1, 𝑦1 = 1) Probability of being a lost cause customer

Table 3.2 Various counterfactual probabilities defined by Pearl (2009, Sec. 9.2.1) and
Verhelst, Mercier, et al. (2023b).

Although not observable, these quantities are relevant for adequate decision-making,
and identifying counterfactuals can help reduce the uncertainty about the possible cus-
tomer behaviors. Companies can also establish a profile of these four categories based
on usage patterns and demographic information, a process called customer segmenta-
tion (Cooil, Aksoy, and Keiningham, 2008), which can reveal valuable insights and guide
future business strategies.

Uplift modeling, as presented in Section 3.1, is another well-known approach for
estimating causal effects. Counterfactuals and uplift are closely related, yet formally
distinct notions. The counterfactual distribution describes the probability of each pos-
sible combination of realized and hypothetical outcomes, while the uplift describes the
change in outcome probability due to treatment. Although the counterfactual distribu-
tion is more informative, it is also more difficult to estimate than the uplift. A. Li and
Pearl (2019) mention that the similarity between these two notions can lead to confu-
sion, especially since they become identical under the assumption of monotonicity (the
absence of negative causal effects, discussed in Section 3.2.2).

The following sections are organized as follows. In Section 3.2.1, we provide the
mathematical formulation of the counterfactual probabilities considered in this thesis
and we define the concept of identifiability. We describe state-of-the-art results that
provide exact inference for counterfactual probabilities in Section 3.2.2, and bounds on
counterfactual probabilities in Section 3.2.3.

3.2.1 Problem formulation

A counterfactual expression is any expression that involves different potential out-
comes (see Definition 2.20). Consequently, there is a large number of possible counter-
factual expressions, even considering only two binary variables. Some of them, listed
in Table 3.2, have been studied in the literature due to their relevance in causal decision-
making (Heckman, 1991; Tian and Pearl, 2000). For example, the probability of suffi-
ciency (PS) formalizes questions “This candidate, who had a PhD, was hired. What is
the probability that they would have been hired if they did not have a PhD?”. As another
example, the probability of being a do-not-disturb customer is the same as the proba-
bility of necessity and sufficiency (PNS) described by Pearl (2009): the counterfactual
expression “𝑦0 = 0 and 𝑦1 = 1” indicates that the customer churns if and only if they
are contacted. In logic, we say that the treatment 𝑡 = 1 is a necessary and sufficient
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condition for the outcome 𝑦 = 1. In this thesis, we are particularly interested in the last
four probabilities listed in Table 3.2. In customer management, they correspond to the
customer categories we presented in Section 3.1. Because of their importance in this
thesis, we define the following notation:

𝛼 = 𝑃(𝑦0 = 0, 𝑦1 = 0) 𝛼(𝑥) = 𝑃(𝑦0 = 0, 𝑦1 = 0 ∣ 𝑥 = 𝑥) (3.30)

𝛽 = 𝑃(𝑦0 = 1, 𝑦1 = 0) 𝛽(𝑥) = 𝑃(𝑦0 = 1, 𝑦1 = 0 ∣ 𝑥 = 𝑥) (3.31)

𝛾 = 𝑃(𝑦0 = 0, 𝑦1 = 1) 𝛾(𝑥) = 𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝑥 = 𝑥) (3.32)

𝛿 = 𝑃(𝑦0 = 1, 𝑦1 = 1) 𝛿(𝑥) = 𝑃(𝑦0 = 1, 𝑦1 = 1 ∣ 𝑥 = 𝑥) (3.33)

All the probabilities in Table 3.2 are related; for example, Pearl (2009, Lemma 9.2.6)
shows that

𝛾 = 𝑃(𝑦 = 1, 𝑡 = 1)PN + 𝑃(𝑦 = 0, 𝑡 = 0)PS,
and, similarly, (Tian and Pearl, 2000, Thm. 2) show that, under the condition of strong
exogeneity (Tian and Pearl, 2000, Def. 13), we have

PN = 𝛾
1 − 𝑆0

and PS = 𝛾
𝑆1

.

Since the realizations of counterfactual statements cannot be directly observed, and
we typically do not have a full knowledge of the causal model, the research focuses on
methods to estimate their probabilities based on data and various assumptions. This
task is called counterfactual identification. The data can be observational data, exper-
imental data, or a mix of both. Identification procedures indicate when and how the
probability of counterfactuals can be computed exactly (Correa, Sanghack Lee, and
Bareinboim, 2021). This is called the fully identifiable setting. In situations where
the exact probability of counterfactuals cannot be computed, an alternative consists
in bounding this quantity. This approach, called partial counterfactual identification,
was first developed by Tian and Pearl (2000), and more recently by Mueller, A. Li, and
Pearl (2021) and J. Zhang, Tian, and Bareinboim (2022).

3.2.2 Estimation in fully identifiable settings

Under specific conditions, some counterfactual probabilities can be computed exactly
from data. See Appendix B for an example of counterfactual computation with a very
a simple causal model. In this section, we discuss two important results from the liter-
ature pertaining to more realistic settings.

The assumption of monotonicity states that treatment 𝑡 does not have a negative
effect on the outcome 𝑦 . For example, we might assume that sending a marketing email
to potential buyers of a product cannot reduce the probability that the customers buy
the product. With a binary outcome and treatment, this corresponds to the probability
of being a do-not-disturb customer equal to zero:

𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝑥 = 𝑥) = 0 for all 𝑥 ∈ 𝒳. (3.34)

Note that, in the case where we seek to maximize the probability of the outcome 𝑦 = 1
(for example, in online retail), the assumption of monotonicity would be 𝑃(𝑦0 = 1, 𝑦1 =
0 ∣ 𝑥 = 𝑥) = 0 for all 𝑥 ∈ 𝒳 . From Eq. (3.34), the joint probability distribution of 𝑦0, 𝑦1
given 𝑥 = 𝑥 can be fully recovered from the conditional marginal distributions:

𝛼(𝑥) = 1 − 𝑆0(𝑥) 𝛽(𝑥) = 𝑆0(𝑥) − 𝑆1(𝑥)
𝛾 (𝑥) = 0 𝛿(𝑥) = 𝑆1(𝑥)
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where 𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥), as defined in Eq. (3.1). We can see that the uplift
𝑈 (𝑥) = 𝑆0(𝑥) − 𝑆1(𝑥) is now equal to the probability of being a persuadable customer.
Therefore, uplift modeling can be used to estimate counterfactual probabilities under
the assumption of monotonicity.

Correa, Sanghack Lee, and Bareinboim (2021) derived a systematic way to deter-
minewhether and how counterfactual probabilities can be computed from a set of obser-
vational and experimental data. They assume that, of a causal model𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ),
we only have knowledge of the graph 𝐺, and we have a collection of datasets 𝐷1, … , 𝐷𝑛
sampled from 𝑉 distributed under diverse interventions do(𝑊 1 = 𝑤1), … , do(𝑊 𝑛 = 𝑤𝑛),
with 𝑊 𝑖 ⊆ 𝑉 . This can include the null intervention 𝑊 𝑖 = ∅, which corresponds to ob-
servational data. Given a counterfactual probability of interest, the general idea is to
formulate a set of conditions that indicate whether the probability can be computed,
based on the graph 𝐺, the potential outcomes in the counterfactual expression, and the
available data 𝐷1, … , 𝐷𝑛. If the probability can be estimated, another procedure indi-
cates how the counterfactual probability can be transformed into another expression
involving only probabilities that can be estimated from the available data. It is worth
stressing that this procedure is complete, that is, if the algorithm fails to provide a so-
lution, then the counterfactual cannot be identified under this set of assumptions. As
a special case, they provide a separate algorithm for conditional counterfactual proba-
bilities, that is, probabilities of the form 𝑃(𝑌 ∗ = 𝑦∗ ∣ 𝑍∗ = 𝑧∗), where 𝑌 ∗ and 𝑍∗ are
arbitrary conjunctions of counterfactuals.

The result by Correa, Sanghack Lee, and Bareinboim (2021) applies to an arbitrary
graph 𝐺, an arbitrary collection of observational and experimental data, and any coun-
terfactual probability to be estimated. As such, this generalizes a wide range of results
in the causal inference literature, notably on inferring causal effects from observational
data (Correa and Bareinboim, 2020; Pearl and Robins, 1995; Tian and Pearl, 2002). How-
ever, this requires full knowledge of the causal graph 𝐺, which is not always the case in
practice. Note the conceptual difference with the assumption of monotonicity, which
does not require knowledge of the graph 𝐺, but assumes that the function determining
the value of 𝑦 is monotonic in 𝑡 . Although we can consider that Correa, Sanghack Lee,
and Bareinboim (2021) solved the problem of full counterfactual identification from
assumptions on 𝐺, there is a much wider set of possible assumptions on the set of func-
tions 𝐹 that could lead to new identification results.

3.2.3 Estimation in partially identifiable settings

Although counterfactual probabilities cannot always be fully identified, that is, they
cannot be computed exactly, they can always be bounded. This task is called partial
identification. By definition, any probability is bounded by zero and one, but with as-
sumptions on 𝐺, 𝐹 , or the available data, tighter bounds can be derived.

Bounds on the probability of counterfactuals have first been derived in Tian and
Pearl (2000). They consider various assumptions to derive bounds on the probability
of necessity (PN), the probability of sufficiency (PS), and the probability of necessity
and sufficiency (PNS), denoted 𝛾 in Eq. (3.32). In particular, they showed that 𝛾 can be
bounded as

max{0, 𝑆1 − 𝑆0} ≤ 𝛾 ≤ min{1 − 𝑆0, 𝑆1}. (3.35)

The bounds are derived from the classical Fréchet bounds (Fréchet, 1935) stating that
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for any events 𝐴 and 𝐵,
max{0, 𝑃(𝐴) + 𝑃(𝐵) − 1} ≤ 𝑃(𝐴, 𝐵) ≤ min{𝑃(𝐴), 𝑃(𝐵)}. (3.36)

By replacing 𝐴 with 𝑦0 = 0 and 𝐵 with 𝑦1 = 1, we find Eq. (3.35).
Mueller, A. Li, and Pearl (2021) derived tighter bounds on 𝛾 for a variety of causal

diagrams, such as in the presence of a mediator variable (a variable on the causal path
from the treatment to the outcome). By assuming that the covariates 𝑥 have a discrete
probability distribution, they also show in their Theorem 5 that, if 𝑥 satisfies the back-
door criterion (Pearl, 2009, Def. 3.3.1), we have

∑
𝑥∈𝒳

𝑃(𝑥 = 𝑥)max{0, 𝑆1(𝑥) − 𝑆0(𝑥)} ≤ 𝛾 ≤ ∑
𝑥∈𝒳

𝑃(𝑥 = 𝑥)min{1 − 𝑆0(𝑥), 𝑆1(𝑥)}.

In Chapter 6, we will derive similar bounds, but without restrictions on the distribution
of the covariates.

A. Li and Pearl (2019) bound the quantity 𝛾 (𝑥) (see Eq. 3.32), which they call the
𝑥-specific PNS, without assuming unconfoundedness, by

max {
0

𝑆1(𝑥)−𝑆0(𝑥)
𝑃(𝑦=1∣𝑥)−𝑆0(𝑥)
𝑆1(𝑥)−𝑃(𝑦=1∣𝑥)

} ≤ 𝛾(𝑥) ≤ min {
1−𝑆0(𝑥)
𝑆1(𝑥)

𝑃(𝑦=1,𝑡=1∣𝑥)+𝑃(𝑦=0,𝑡=0∣𝑥)
𝑆1(𝑥)−𝑆0(𝑥)+𝑃(𝑦=1,𝑡=0∣𝑥)+𝑃(𝑦=0,𝑡=1∣𝑥)

} .

These bounds reduce to the Fréchet bounds in Eq. (3.35) when 𝑆0(𝑥) = 𝑃(𝑦 = 1 ∣ 𝑡 =
𝑡, 𝑥 = 𝑥), which is a consequence of the assumption of unconfoundedness. Their main
focus is the estimation of the profits generated by individuals with specific characteris-
tics 𝑥 = 𝑥 , assuming arbitrary gains for the four counterfactual categories. For example,
keeping a persuadable customer (a customer churns only when not targeted) might be
more beneficial than keeping a sure thing customer, besides the cost of the targeted
action. Assuming that the counterfactual outcomes generate a gain 𝐵, noted

𝐵 =
⎧⎪
⎨⎪
⎩

𝑎 if 𝑦0 = 0 and 𝑦1 = 0
𝑏 if 𝑦0 = 1 and 𝑦1 = 0
𝑐 if 𝑦0 = 0 and 𝑦1 = 1
𝑑 if 𝑦0 = 1 and 𝑦1 = 1,

they provide bounds on the expected gain, which is defined as

𝔼[𝐵 ∣ 𝑥 = 𝑥] = 𝑎𝛼(𝑥) + 𝑏𝛽(𝑥) + 𝑐𝛾 (𝑥) + 𝑑𝛿(𝑥).
Furthermore, they show that the bounds on 𝐵 reduce to a single value under the as-
sumption of monotonicity (discussed in the previous section), or gain equality, defined
as the setting where 𝑏 + 𝑐 = 𝑎 + 𝑑 . A. Li and Pearl (2022) further refine the bounds
on the campaign benefit by using additional covariates and assumptions on the causal
graph 𝐺, such as the mediator setting discussed by Mueller, A. Li, and Pearl (2021).

Finally, J. Zhang, Tian, and Bareinboim (2022) express partial counterfactual identi-
fication as a polynomial programming problem, providing tight bounds for any causal
graph 𝐺 and any combination of experimental and observational data, assuming that
we have full knowledge of 𝐺. This can be seen as the equivalent for partial counterfac-
tual identification of the procedure for full counterfactual identification developed by
Correa, Sanghack Lee, and Bareinboim (2021).
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Most of these articles provide bounds on counterfactual probabilities based on struc-
tural assumptions on 𝐺, however, besides those discussing the monotonic setting, none
make any assumption on the functional dependencies (the set of functions 𝐹 in the
causal model). In Chapter 6, we explore the synergies between uplift modeling and
counterfactual identification, resulting in tighter bounds without knowledge of 𝐺. We
also provide different point estimates of counterfactual probabilities based on different
assumptions about the functional dependencies between 𝑦, 𝑡 and 𝑥 .
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Part II

Contributions

If we knew what we were doing,
we wouldn’t call it research.

Albert Einstein, apocryphal

https://asociologist.com/2010/09/04/adventures-in-fact-checking-einstein-quote-edition/




4
Experimental comparison of

predictive and uplift modeling

Some of the results presented in this chapter have been published in the following articles:

• Théo Verhelst, Jeevan Shrestha, et al. (2021). “Predicting reach to find persuad-
able customers: Improving uplift models for churn prevention”. In: Discovery
science. Ed. by Carlos Soares and Luis Torgo. Cham: Springer International Pub-
lishing, pp. 44–54. isbn: 978-3-030-88942-5

• Théo Verhelst, Denis Mercier, et al. (2023a). “A churn prediction dataset from
the telecom sector: a new benchmark for uplift modeling”. In: ECML PKDD
2023 Workshops - Workshop on Uplift Modeling and Causal Machine Learning for
Operational Decision Making

In this chapter, we compare the performance of the conventional machine learning
approach (described in Section 2.3) and that of uplift modeling (described in Section 3.1)
for the problem of customer churn mitigation. Emphasis is placed on empirical results
derived from benchmarks and real-world experiments, prioritizing practical insights
over theoretical arguments. We examine this question from a theoretical point of view
in Chapter 5.

The added value of uplift modeling over churn prediction has rarely been assessed
empirically. Wijaya et al. (2021) evaluated this question with a focus on employee
turnover, while the studies by Ascarza (2018) and Devriendt, Berrevoets, and Verbeke
(2021) focus on customer retention. These three studies advocate the use of uplift mod-
eling, but have evaluated a very limited number of uplift models. While it is clear that
uplift is less biased than churn prediction to estimate causal effects, the performance
gain is debated and context-dependent (Fernández-Loria and Provost, 2022a). In set-
tings such as customer retention, characterized by non-linearity, low class separability,
and high dimensionality, the theoretical advantages of uplift might be insufficient to
outweigh its drawbacks with respect to the usual strategy of churn prediction.

The uplift literature faces another pressing issue: the low number of publicly avail-
able datasets designed specifically for uplift modeling. A recent uplift benchmark con-
ducted by Rößler and Schoder (2022) listed only four public uplift datasets: Criteo
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(Diemert Eustache, Renaudin, andMassih-Reza, 2018), Hillstrom (Hillstrom, 2008), Star-
bucks1 and Lenta2. Furthermore, despite the fact that customer churn is often cited as
a common application for uplift modeling, none of these public datasets is concerned
with churn. This is a critical issue that hinders the reproducibility of studies on churn
prevention with uplift modeling.

In this chapter, we conduct several experiments to compare the performance of up-
lift modeling with the predictive approach. Specifically, we assess the performance of
several uplift and churn models in a benchmark on two real-world churn datasets from
Orange Belgium, as well as on two publicly available uplift datasets. Then, we compare
the best strategies according to our empirical results in a series of real customer reten-
tion campaigns. This experiment represents a unique contribution to the literature,
where new models are always evaluated on historical data. Finally, we develop and
assess a series of strategies to take advantage of information about which customers
were reached during previous churn campaigns. To address the lack of publicly avail-
able churn datasets for uplift modeling, this chapter makes publicly available one of the
two datasets from Orange Belgium. This dataset offers researchers and practitioners a
new resource to evaluate strategies aimed at reducing churn and increasing customer
retention within the telecommunications industry.

The contributions of this chapter can be summarized as follows:

• The publication of the first public churn dataset with anonymized customer data
from Orange Belgium, allowing the research community to evaluate new uplift
strategies on challenging and realistic data (Section 4.1).

• A benchmark of various uplift models on two churn datasets and two other pub-
licly available datasets (Section 4.2), indicating that the classical predictive ap-
proach is competitive, if not more effective than uplift modeling.

• A new measure of the variability of a ranking, which plays an important role in
the performance of a model (Section 4.2.2).

• The comparison of uplift and predictive modeling in a series of real customer
retention campaigns (Section 4.3), confirming our results on historical data. This
is the first time in the uplift literature that the performances of predictive and
uplift modeling are compared in a live setting.

• The development of several strategies to integrate reach information into uplift
modeling (Section 4.4), which significantly improve the performance of uplift
modeling.

The remainder of this chapter is organized as follows. In Section 4.1, we present
the data used in these experiments and the procedure used to make one of the datasets
publicly available online. The experiments, divided in three stages, are described in
Sections 4.2 to 4.4. A benchmark of various uplift models is performed in Section 4.2.
These results are confirmed in real customer retention campaigns in Section 4.3. In
Section 4.4, we explore how to use reach information to improve uplift models. Each
of these three sections is divided into a description of the experimental setup and a

1https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exerci
se, last accessed 2023-12-12.

2https://www.uplift-modeling.com/en/latest/api/datasets/fetch_lenta.html, last accessed 2023-12-12.
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presentation of the results. Finally, we discuss our results and present our conclusions
in Section 4.5.

4.1 Churn datasets

The two churn datasets used in this benchmark come from a series of marketing cam-
paigns carried out by Orange Belgium during 2019 and 2020. The Churn 1 dataset
contains six campaigns during 2019 and 2020, while the Churn 2 dataset contains three
campaigns during 2020. The different number of campaigns in the two datasets results
from specific circumstances at the time of creation of the datasets in terms of access
rights to the databases and other technical considerations. In both datasets, the data
from the individual campaigns are aggregated. We chose to perform our analyses on
the aggregated data rather than on each campaign individually to obtain a higher sta-
tistical confidence in our results with a greater number of samples. This might blur
some specific dynamics and effects that occur in some campaigns (e.g., if a competitor
launched a large marketing campaign at the same time). However, our objective is not
to understand the dynamics and the performance of each campaign, rather it is to ob-
tain insights on the performance of different modeling approaches as a function of the
characteristics of the data. We refer the reader to our previous work (Verhelst, 2018;
Verhelst, Caelen, et al., 2020) for a more detailed analysis of churn dynamics in specific
campaigns.

As described in Section 1.3, during each campaign, the probability of churn of each
customer is estimated using a predictive model and the most risky customers are se-
lected. A subset of these high-risk customers is randomly assigned to the control group,
while the remaining customers form the target group. The list of customers in the tar-
get group is then shared with a call center tasked with contacting each customer and
presenting them with a marketing offer, or recommending a new tariff plan based on
their individual history. Customer churn is determined in a two-month window follow-
ing the campaign, and any subsequent churn is not attributed to this specific campaign.
The data from this campaign and the churn outcome are then recorded in the historical
database, and the same campaign process is repeated the next month.

We also assessed datasets from other campaigns, such as the add card campaign
where customers are contacted to suggest them to buy a new SIM card, for example
for another member of their family. Another campaign we considered focused on cus-
tomers who have poor network coverage at home, which requires a dedicated strategy
to mitigate churn. Preliminary results suggested that the uplift approach does not per-
form significantly better on these datasets than on the Churn 1 and Churn 2 datasets.
Therefore, we did not include these preliminary results in this chapter to simplify the
presentation. See Massimetti (2021) for an assessment of uplift modeling on the churn
and add card datasets.

4.1.1 Description

The characteristics of the two churn datasets from Orange Beligum, as well as the
Criteo dataset (Diemert Eustache, Renaudin, and Massih-Reza, 2018), and the Hillstrom
dataset (Hillstrom, 2008), are summarized in Table 4.1. In the Criteo dataset, customers
in the target group are exposed to an online ad, whereas the Hillstrom dataset rep-
resents an email marketing campaign. In both cases, the reaction of the customer is
recorded in terms of visiting the advertiser’s website and possibly buying a product.
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Table 4.1 Description of the churn dataset and two other uplift datasets. TheHillstrom
dataset is more balanced than the other datasets, and the twoChurn datasets havemany
more features. Criteo is characterized by a large number of samples.

Name Features Samples
Control
response
rate (%)

Target
response
rate (%)

Treatment
rate (%)

Churn 1 145 11,268 4.8 4.0 66.3
Churn 2 178 11,896 3.6 3.4 75.7
Hillstrom 15 42,693 10.6 15.1 66.7
Criteo 12 25,309,483 4.2 4.9 84.6

We report the number of features, the number of samples, the response rate in the
control and target groups (𝑆0 and 𝑆1), and the treatment rate, 𝑃(𝑡 = 1).

The Churn 1 and Churn 2 datasets consists of 11,268 and 11,896 records, a relatively
small number compared to other publicly available uplift datasets. However, they have
a larger number of features, 145 and 178. These features encompass a diverse range of
customer attributes:

• subscription details (e.g., type of tariff plan, number of products): 45 features in
Churn 1, 42 in Churn 2.

• Usage metadata (e.g., number of calls, data consumption): 30 features in Churn
1, 37 in Churn 2.

• Revenue (e.g., total revenue, revenue due to data usage): 33 in Churn 1, 34 in
Churn 2.

• Hardware (e.g., phone type): 4 in both Churn 1 and Churn 2.

• Sociodemographics (e.g., age, province): 19 in Churn 1, 48 in Churn 2.

• Service quality (e.g., number of calls to customer service): 14 in both Churn 1
and Churn 2.

To illustrate these features, we report in Fig. 4.1 the distribution of the out-of-bundle
amount in the Churn 2 dataset, which is the additional fee paid by the customer for ser-
vices not included in the provision of the tariff plan. The distribution of this feature is a
strong indicator of bill shock, that is, the reaction of a customer when faced with a high
bill, as discussed in Section 1.3. The distribution of the out-of-bundle amount is shown
on a logarithmic scale, separately for churners and non-churners. The probability den-
sity function depicted in this figure is estimated using a Gaussian kernel. Consequently,
the resulting distribution exhibits characteristics resembling a mixture of Gaussians,
even though the underlying probability density is not necessarily Gaussian. A dispar-
ity appears between the distributions of churners and non-churners, with churners fre-
quently having a larger out-of-bundle amount. This observation is frequently used in
the formulation of expert rules during churn retention campaigns. Specifically, when
a customer is deemed likely to churn and demonstrates a substantial out-of-bundle, it
serves as a trigger to propose a tariff plan better suited to their usage profile. We re-
fer the reader to (Verhelst, 2018) or a more comprehensive description of the various
customer features used by Orange Belgium.
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Figure 4.1 Probability density function of the out-of-bundle amount (the supplement
paid by the customer for services not included in their standard allowances), on a log-
arithmic scale. We see that churners have a higher out-of-bundle than non-churners.

4.1.2 Data preparation

Several steps are performed to prepare the dataset for the experiments.

Categorical features Some features, such as the tariff plan or the province of resi-
dence, are categorical. Some of these features can have a large number of dif-
ferent values, but this can have a negative impact on the performance of some
learning algorithms, such as random forests. To address this issue, we replace
the less common values with a placeholder value “Other”.

One-hot encoding The categorical features are then replaced by a binary vector con-
taining a 1 at the position corresponding to the value of the feature. In principle,
this should not be necessary for random forests (the machine learning model
used in our experiments), since they can handle discrete values; however, we use
the sklearn Python package for machine learning, which requires all features to
be numerical.

Normalization Since some features have very different scales (e.g., the total amount
paid by a customer and the number of contracts of a customer), the features are
linearly normalized to have a minimum value of 0 and a maximum value of 1.

4.1.3 Mutual information between features and potential outcomes

One distinctive aspect of churn datasets is the inherent difficulty of accurately predict-
ing the churn outcome. The complex dynamics of churn in the telecom sector make
prediction a challenging task, requiring advanced modeling techniques to capture the
underlying patterns and factors influencing customer behavior. Uplift modeling is even
more difficult than predicting churn due to the small effect of retention campaigns. To
quantify this aspect, we estimate the mutual information 𝐼 (𝑥; 𝑦 𝑡) (for 𝑡 = 0, 1), which
measures the difficulty in predicting the binary outcome 𝑦 𝑡 from the vector of features
𝑥 (T. M. Cover and Thomas, 1991). It is computed using the identity in Eq. (2.21):

𝐼 (𝑥; 𝑦 𝑡) = 𝐻(𝑦 𝑡) − 𝐻(𝑦 𝑡 ∣ 𝑥) = 𝐻(𝑦 𝑡) − ∫𝒳 𝐻(𝑦 𝑡 ∣ 𝑥 = 𝑥) d𝑥 (4.1)
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Table 4.2 Estimates of the mutual information between the features and the outcomes.

𝐻(𝑦0) 𝐻(𝑦1) ̂𝐼 (𝑥; 𝑦0) ̂𝐼 (𝑥; 𝑦1)
̂𝐼 (𝑥;𝑦0)
𝐻(𝑦0)

̂𝐼 (𝑥;𝑦1)
𝐻(𝑦1)

Churn 1 0.19 0.17 0.1871 0.1584 3.54% 6.18%
Churn 2 0.16 0.15 0.0008 0.0025 0.54% 1.71%
Hillstrom 0.34 0.43 0.0112 0.0123 3.32% 2.90%
Criteo 0.16 0.20 0.0429 0.0573 24.63% 29.32%

where the term 𝐻(𝑦 𝑡) is estimated from the prior distribution of 𝑦 𝑡 using Eq. (2.10).
Noting the dataset as 𝐷 = {𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖)}𝑁𝑖=1, the integral above can be estimated by its
plug-in estimator, as a sum over the samples in the dataset:

∫𝒳 𝐻(𝑦 𝑡 ∣ 𝑥 = 𝑥) d𝑥 ≈ 1
𝑁

𝑁
∑
𝑖=1

𝐻 (𝑦 𝑡 ∣ 𝑥 = 𝑥(𝑖)) . (4.2)

Individual terms 𝐻 (𝑦 𝑡 ∣ 𝑥 = 𝑥(𝑖)) are estimated using the probabilities predicted by a
T-learner uplift model (see Section 3.1.2) as

𝐻(𝑦 𝑡 ∣ 𝑥) = 𝑃(𝑦 𝑡 = 0 ∣ 𝑥) log 𝑃(𝑦 𝑡 = 0 ∣ 𝑥) + 𝑃(𝑦 𝑡 = 1 ∣ 𝑥) log 𝑃(𝑦 𝑡 = 1 ∣ 𝑥). (4.3)

Details of the experimental setup used to train the uplift model are presented in Sec-
tion 4.2. The estimates of the mutual information are given in Table 4.2. In the last
two columns, the mutual information estimate is divided by the entropy of the prior
distribution, indicating the proportion of uncertainty of the outcome explained by the
features. The Churn 1 and Churn 2 datasets have a low outcome probability similar to
that of the Criteo dataset, while also having a very low mutual information, like the
Hillstrom dataset.

4.1.4 Randomization

Since the churn datasets come from randomized campaigns, the treatment should be
independent of the outcomes. To validate this independence, we performed the Classi-
fier 2 Sample Test used in (Diemert Eustache, Renaudin, and Massih-Reza, 2018) on the
Churn 2 dataset. We trained a random forest classifier (Breiman, 2001) to predict the
treatment indicator and compared its Hamming loss with the loss distribution obtained
under the null hypothesis (i.e., assuming the treatment is indeed randomized), which
is sampled by training models to predict random splits. The treatment predictor has a
loss of 23.82% (close to the proportion of control samples, 24.26%), which corresponds
to a p-value of 0.26 under the null hypothesis. This result is shown in Fig. 4.2. This
indicates that the treatment cannot be predicted based on available features, hence the
randomization of treatment assignment can be considered appropriate and unbiased.

4.1.5 Online availability

Despite the fact that uplift modeling is often illustrated with the problem of customer
churn, none of the public uplift datasets contain churn data. During this research
project, we had the opportunity to publish the Churn 2 dataset online. This is the first
public uplift dataset concerning customer churn, allowing other researchers to develop
and assess uplift models and causal inference methods on realistic and challenging data.
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Figure 4.2 Prediction loss on the treatment indicator for the Churn 2 dataset. The
histogram represents the distribution of the loss with a randomized treatment. If the
treatment was not randomized, we would expect the actual loss to be far in the left
tail of the loss distribution under 𝐻0. The actual loss when predicting the treatment is
23.82%, which corresponds to a p-value of 0.26, indicating that the treatment is correctly
randomized.

To ensure the privacy of customers and the confidentiality of the features used by
Orange Belgium, the data is anonymized by using a Principal Component Analysis
(PCA) projection of the numerical features. This allows effective for analyses and mod-
eling while protecting sensitive information. Adopting this strategy has proven to be
effective in preserving predictive accuracy while safeguarding privacy in the domain
of fraud detection (Dal Pozzolo, Caelen, Johnson, et al., 2015). There are many other
anonymization approaches (Majeed and Sungchang Lee, 2020), however, the PCA pro-
jection has the advantage of both ensuring the privacy of the customers and to guar-
antee the confidentiality of the features. All categorical features and their levels are
anonymized by giving them generic names. The dataset is available on the OpenML
website3, or by running the following Python code, after installing the package openml:

from openml.datasets import get_dataset
dataset = get_dataset("churn-uplift-orange")

4.2 Benchmark of uplift models

In this section, we compare the performance of several uplift models against a conven-
tional churn prediction model. This benchmark constitutes a stepping stone in this
thesis to understand the performance of uplift modeling to prevent customer churn.
Several studies have assessed the performance of different uplift models (Devriendt,
Moldovan, and Verbeke, 2018; Kayaalp, 2017; Rößler and Schoder, 2022), however, to
the best of our knowledge, only three studies have empirically compared predictive and
uplift approaches. The study by Wijaya et al. (2021) is focused on employee turnover,
while the studies by Ascarza (2018) and Devriendt, Berrevoets, and Verbeke (2021) fo-
cus on customer retention. These three studies advocate the use of uplift modeling, but
have evaluated a very limited number of uplift models. We aim to bridge this gap in the

3https://www.openml.org/search?type=data&id=45580, last accessed 2023-12-12.
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literature by comparing a larger number of uplift models with the predictive approach
on various datasets. Note that we do not seek to achieve the highest performance with
uplift modeling on the datasets at hand. Rather, we aim to compare the various ap-
proaches on an equal footing. Therefore, the hyperparameters are chosen to achieve
realistic performances, but were not subject to extensive optimization.

4.2.1 Experimental setup

We benchmark the following uplift models, which have been described in Section 3.1.2:

• Outcome-RF: A random forest (Breiman, 2001) trained to predict the probability
of churn 𝑃(𝑦 = 1 ∣ 𝑥). This represents the classical predictive approach.

• S-learner: The S-learner uplift model using a random forest as base learner.

• T-learner: The T-learner uplift model using random forests as base learners.

• X-learner: The X-learner uplift model by Künzel et al. (2019) using random
forests as base learners.

• Z-target: The modified target uplift model estimating the probability distribu-
tion of 𝑧 = 𝑦(1 − 𝑡) + (1 − 𝑦)𝑡 , proposed by Jaskowski and Jaroszewicz (2012),
using a random forest as base learner.

• Uplift-RF: The uplift random forest model proposed by Guelman, Guillén, and
Pérez-Marín (2015).

The choice of the random forest as the base learner is based on previous work on
churn prediction and uplift modeling (Massimetti, 2021; Verhelst, Caelen, et al., 2020)
and related work in fraud detection Dal Pozzolo and Bontempi (2015), which shares
many similarities, such as class imbalance and low separability. In these previous ex-
periments, random forests were consistently the best performing models, sometimes
equaled by boosting models. This is also consistent with benchmarks performed by
data scientists at Orange Belgium. Given this previous experience, we chose random
forests in all our experiments to have a consistent and realistic basis to compare the
performance of different approaches. We did not perform extensive hyperparameter
optimization; instead, we observed that the performance of random forests in churn
prediction plateaued when using more than 100 trees. Limiting the depth of trees
and setting a minimum number of samples per leaf was also found to be important
to achieve good performances. Therefore, all models use 100 trees, a maximum depth
of 20, and a minimum of 10 samples per leaf.

Given the high class imbalance of the datasets, we rely on the EasyEnsemble strat-
egy (X.-Y. Liu, Wu, and Zhou, 2009) for class balancing. Ensemble techniques for class
balancing are known to perform well for churn prediction (Zhu, Baesens, and Broucke,
2017). As described in Section 2.3.6, EasyEnsemble consists in training 𝑘 base learners
on the whole set of positive instances (churners) and an equally sized random set of
negative instances. The predictions of all the base learners are averaged to obtain the
final prediction. We set the number of base learners for EasyEnsemble at 𝑘 = 10. We
did not observe significant differences in performance between the different split cri-
teria for Uplift RF. Therefore, we chose the Euclidean distance, given its empirical
superiority according to Rzepakowski and Jaroszewicz (2012).
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We used the 𝑘-fold cross-validation procedure with 𝑘 = 3 folds. In each iteration
of the 𝑘-fold cross-validation, 𝑘 − 1 folds are used as a training set, and the remaining
fold is used as a test set. We estimate the performance of the different models using
the uplift curve (defined in Definition 3.3) evaluated on the held-out folds. To obtain a
single quantitativemeasure of performance, we compute the area under the uplift curve
(AUUC). The AUUC suffers from a large variance due to the low number of churners;
therefore, we repeat the whole experiment 10 times to reduce the impact of random
sampling. An alternative would be to increase the value of 𝑘 (for example, to 𝑘 = 30);
however, this approach would result in very small validation sets, some of which may
not even contain churners. This would further increase the variance of the resulting
uplift curve. On the other hand, repeating the 𝑘-fold procedure maintains a relatively
large size for the validation sets, while decreasing the variance of the AUUC.

The literature suggests that the variance of the estimator plays an important role in
determining whether the uplift approach outperforms predictive modeling (Fernández-
Loria and Provost, 2022a). To evaluate this aspect, we estimate the variance of the
models using the procedure presented by Webb (2000). Given that we repeat the 𝑘-fold
cross-validation procedure 10 times, we have 10 different predictions of the score for
each sample, coming from model instances trained on different training sets. For each
sample, we compute the variance of the 10 predictions, and report the average variance
across all data samples for each model.

4.2.2 Ranking variance

The performance of a model in terms of the uplift curve is determined by the ranking
induced by the scores predicted by the model. This ranking can vary even with a low
estimator variance, if a similar score is assigned to all samples. For example, S-learner
provides scores close to zero on datasets where the treatment has a low causal effect,
because the model ignores the effect of the treatment on the outcome given the other
more informative features.

There is no standard and well-established way to estimate the stability of a ranking.
Gao et al. (2010) suggest an approach that requires repeating the training process as
many times as there are samples in the training set, which is prohibitively long for
medium to large datasets. Perini, Galvin, and Vercruyssen (2020) suggest a three steps
process:

1. Train ℓ models from ℓ different subsets of the training set.

2. Compute, for each test sample, the variance of the rank of this sample induced
by the ℓ models.

3. Average the rank variance of all test samples to obtain a unique measure.

We propose a new measure of ranking variance that is less computationally inten-
sive than that proposed by Gao et al. (2010). Our measure is based on the notion of
KL-divergence (presented in Definition 2.8), which we expect to be more amenable to
theoretical analysis than the notion of variance of the rank of a sample used by Perini,
Galvin, and Vercruyssen (2020). However, we have not theoretically analyzed the va-
lidity of our measure. Given a model ℳ trained on a random dataset 𝐷tr and a sample
𝑥(𝑖) from a test set 𝐷te = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1, we assume that the scores are independent
and normally distributed:

ℳ(𝑥(𝑖), 𝐷tr) ∼ 𝒩 (𝜇𝑖, 𝜎2𝑖 ). (4.4)
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We quantify the robustness of the ranking between two samples 𝑥(𝑖) and 𝑥(𝑗) by using
the Kullback–Leibler (KL) divergence between the two score distributions (see Defi-
nition 2.8). A higher KL divergence indicates that the score distributions are further
apart, hence it is less likely that the relative position of these two samples in the rank-
ing changes. In the case of normal distributions (Belov and Armstrong, 2011), the KL
divergence reduces to

𝐷(ℳ(𝑥(𝑖), 𝐷tr) ∥ ℳ(𝑥(𝑗), 𝐷tr)) = log
𝜎𝑗
𝜎𝑗

𝜎𝑖 +
𝜎2𝑖 + (𝜇𝑖 − 𝜇𝑗)2

2𝜎2𝑗
− 1

2. (4.5)

The final measure is the inverse of the average KL divergence between all pairs of
samples in the test set 𝐷te:

RankVar(ℳ,𝐷te) = ( 1
𝑁 2

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝐷(ℳ(𝑥(𝑖), 𝐷tr) ∥ ℳ(𝑥(𝑗), 𝐷tr)))
−1

. (4.6)

The average KL divergence (the quantity between parentheses) is higher when the rank-
ing is more stable. Therefore, we take the inverse of this quantity to express the vari-
ability of the ranking.

4.2.3 Results

The results of the benchmark are presented in Tables 4.3 to 4.5. As shown in Table 4.3,
our observations reveal that Outcome-RF is superior to other approaches in terms of
the area under the uplift curve (AUUC) across most datasets, particularly excelling on
the Churn 1 and Criteo datasets. The second position is claimed by X-learner on the
Churn 1 dataset, and by T-learner on the Criteo dataset. On the Churn 2 dataset, most
models, except S-learner, display similar performances. Note these results exhibit a
high degree of uncertainty, as indicated by the large standard deviations.

The Hillstrom dataset displays results quite different from those of the other data
sets. The uplift models far outperform Outcome-RF, with S-learner and T-learner
achieving the highest AUUC. We also observe that all models have a higher AUUC on
the Hillstrom dataset than on the other datasets. We attribute this difference to the fact
that the outcome is balanced in the Hillstrom dataset, whereas it is unbalanced and
more difficult to predict in the Churn 2 dataset, as reported in Table 4.2.

In order to assess the impact on performances of the PCA projection, we conducted
an identical experiment on the original, non-anonymized Churn 2 dataset. It appears
that the performance is lower on the anonymized dataset than on the original, most
notably for X-learner. However, the other models do not suffer as much from the
anonymization procedure, and the performance of Z-target is not impacted at all.

From Table 4.4 we see that S-learner has the lowest estimator variance, by sev-
eral orders of magnitude, except on the Hillstrom dataset. As discussed in Section 4.2.1,
this can be explained by the low importance given by S-learner to the treatment in-
dicator compared to other features, leading it to predict almost the same value in the
treatment (𝑡 = 1) and control (𝑡 = 0) scenarios, resulting in a predicted uplift close to
zero. Outcome-RF has the lowest estimator variance after S-learner. This is a possi-
ble reason for its superiority to the uplift models, as already suggested in the literature
(Fernández-Loria and Provost, 2022a,b). This is further demonstrated by the ranking
variance, reported in Table 4.5. Outcome-RF has the lowest ranking variance across all
datasets, except for the Churn 2 dataset, where it is second after Z-target.
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Table 4.3 Mean and standard deviation of the AUUC in percentage points. The highest
AUUC is underlined for each dataset.

Model Churn 1 Churn 2
Churn 2
(original) Hillstrom Criteo

Outcome-RF 0.91 ± 0.45 0.26 ± 0.47 0.33 ± 0.37 2.20 ± 0.32 1.01 ± 0.25
S-learner 0.48 ± 0.37 0.12 ± 0.31 0.19 ± 0.27 2.74 ± 0.32 0.69 ± 0.21
T-learner 0.25 ± 0.18 0.25 ± 0.38 0.33 ± 0.39 2.72 ± 0.28 0.86 ± 0.18
X-learner 0.72 ± 0.36 0.24 ± 0.39 0.45 ± 0.37 2.52 ± 0.27 0.58 ± 0.16
Z-target 0.53 ± 0.41 0.26 ± 0.32 0.25 ± 0.39 1.85 ± 0.32 0.09 ± 0.05
Uplift-RF 0.43 ± 0.38 0.20 ± 0.37 0.18 ± 0.29 2.31 ± 0.28 0.89 ± 0.23

Table 4.4 Average variance of the estimators. The lowest variance is underlined for
each dataset.

Model Churn 1 Churn 2 Hillstrom Criteo

Outcome-RF 2.93 × 10−3 2.07 × 10−3 3.49 × 10−3 1.23 × 10−3
S-learner 6.81 × 10−6 5.77 × 10−7 4.70 × 10−3 9.40 × 10−5
T-learner 4.13 × 10−3 3.78 × 10−3 7.58 × 10−3 1.94 × 10−3
X-learner 3.01 × 10−3 7.12 × 10−3 4.05 × 10−2 9.31 × 10−3
Z-target 1.04 × 10−2 6.07 × 10−3 1.70 × 10−2 6.36 × 10−3
Uplift-RF 3.04 × 10−3 3.06 × 10−3 6.21 × 10−4 2.05 × 10−3

Table 4.5 Variance of the ranking. The lowest ranking variance is underlined for each
dataset.

Model Churn 1 Churn 2 Hillstrom Criteo

Outcome-RF 0.112 0.729 0.134 0.002
S-learner 1.434 1.588 0.460 0.232
T-learner 0.646 0.929 0.538 0.054
X-learner 0.148 1.396 0.814 0.002
Z-target 0.695 0.647 0.640 0.021
Uplift-RF 5.130 4.619 4.322 0.624

4.3 Customer retention campaigns

Most causal studies are limited to experiments on historical datasets or simulations. An
important opportunity offered by this research project is the ability to validate causal
models in a real setting. Through a collaboration with the data science department and
direct marketing department (i.e., the service responsible for marketing actions that
reach out directly to customers by email, phone, etc.) at Orange Belgium, we are able
to establish the list of customers for several churn prevention campaigns, which follow
the process described in Section 1.3. This allows us to assess the added value of uplift
modeling by comparing the results of such a campaign designed with a causal model
with the campaigns based on the classical predictive approach. During the course of
this thesis, we had the opportunity to perform this experiment in four different cam-
paigns. To the best of our knowledge, this represents a unique aand new contribution
to the uplift and churn literature.
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Figure 4.3 Methodology for comparing the performance of two models during a cus-
tomer retention campaign. In this example, there is an overlap of 2000 between the
customers selected by the churn and uplift models.

4.3.1 Experimental setup

Our objective is to evaluate whether an uplift model performs better than the classical
churn model used by Orange Belgium. A simple approach would be to use only the pre-
dictions of an uplift model for new campaigns and compare the causal effect of these
new campaigns with that of past campaigns which used the churn approach. However,
wide-scale marketing actions by the company or competitors can affect customer be-
havior independently of the campaign. More generally, the churn rate and the effect of
the campaign vary over time, making it difficult to attribute a performance difference
solely to the uplift model. To address this issue, we established an experimental proto-
col in which both the churn model and the uplift model are used concurrently in the
same campaign. The procedure is shown in Fig. 4.3, and involves the following steps:

1. The entire customer base is ranked by a conventional churn prediction model.

2. The top 70k customers are selected, based on this ranking.

3. An uplift model trained on historical data predicts the uplift of these 70k cus-
tomers, which generates a second ranking.

4. Customers are selected by going down both ranking in parallel until the num-
ber required by the call center is reached, accounting for overlap between the
rankings. An example of this process is given in Table 4.6.

5. The resulting group of customers is split randomly into a target group and a
control group.

Note that an uplift model requires data from previous retention campaigns and, as such,
unlike the churn model, it cannot be trained on the whole customer base. This implies
that uplift models are trained only on high-risk customers that have been selected in
past retention campaigns. Therefore, the output of an uplift model on low-risk cus-
tomers is uncertain, and we first need to select only high-risk customers from the cur-
rent customer base using the churn model. We could predict the uplift only on the top
10k customers (assuming the uplift model was trained on data coming from campaigns
with 10k customers), but this would not give the opportunity to the uplift model to se-
lect new customers that the churn model would not have already placed in the top 10k.
Using 70k customers is, in our opinion, a good trade-off between ensuring the validity
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Table 4.6 Example of merging the rankings of the uplift and churn models on a pop-
ulation of 50 customers. We show the first 10 customers in both rankings. Blue cells
indicate selected customers, red cells indicate customers already selected by the other
model earlier in the ranking, and orange cells indicate customers selected simultane-
ously by both models. By going down to rank 7 in both rankings, 9 customers are
selected , which means that there is an overlap of 5 customers between the rankings.

Uplift model Churn model

Customer ID Score Customer ID Score

27 0.74 5 0.83
24 0.67 37 0.81
5 0.65 27 0.77
40 0.65 40 0.76
44 0.44 24 0.76
48 0.42 21 0.66
6 0.41 44 0.64
35 0.35 6 0.61
23 0.33 48 0.61
36 0.31 38 0.56

⋮ ⋮

of predicted uplift scores and allowing the uplift model to discover new persuadable
customers.

By keeping track of which model selected the customers in the resulting control
and target groups (a customer might be selected by both models), we can evaluate and
compare the performances of both models simultaneously. More precisely, we com-
pute the average treatment effect of the campaign on the customers selected by either
the churn model or the uplift model. Let 𝑤𝐶 be a binary random variable indicating
whether the customer was selected by the churn model after Step 4 of the process
described above, and let 𝑤𝑈 be the corresponding variable for the uplift model. Let
𝐷 = {(𝑦 (𝑖), 𝑡(𝑖), 𝑤 (𝑖)

𝐶 , 𝑤 (𝑖)
𝑈 )}𝑁𝑖=1 be the list of selected customer after Step 4, where 𝑁 is the

number of customers in the campaign, 𝑦 (𝑖) is the churn indicator, and 𝑡(𝑖) is the treat-
ment indicator (𝑡(𝑖) = 1 for the treatment group and 𝑡(𝑖) = 0 for the control group). First,
we estimate the churn rate in the control and target groups for both models as

̂𝑆0𝐶 = ∑𝑁
𝑖=1(1 − 𝑡(𝑖))𝑤 (𝑖)

𝐶 𝑦 (𝑖)

∑𝑁
𝑖=1(1 − 𝑡(𝑖))𝑤 (𝑖)

𝐶
̂𝑆1𝐶 = ∑𝑁

𝑖=1 𝑡(𝑖)𝑤 (𝑖)
𝐶 𝑦 (𝑖)

∑𝑁
𝑖=1 𝑡(𝑖)𝑤 (𝑖)

𝐶
(4.7)

̂𝑆0𝑈 = ∑𝑁
𝑖=1(1 − 𝑡(𝑖))𝑤 (𝑖)

𝑈 𝑦 (𝑖)
∑𝑁

𝑖=1(1 − 𝑡(𝑖))𝑤 (𝑖)
𝑈

̂𝑆1𝑈 = ∑𝑁
𝑖=1 𝑡(𝑖)𝑤 (𝑖)

𝑈 𝑦 (𝑖)
∑𝑁

𝑖=1 𝑡(𝑖)𝑤 (𝑖)
𝑈

. (4.8)

Then, the average treatment effect for the churn and uplift models is estimated as

𝑈̂𝐶 = ̂𝑆0𝐶 − ̂𝑆1𝐶 and 𝑈̂𝑈 = ̂𝑆0𝑈 − ̂𝑆1𝑈 . (4.9)

We computed the 90% confidence interval on the average treatment effect following the
procedure proposed by X. Li and P. Ding (2016, Sec. 2.1).
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Figure 4.4 Performance of both the uplift and churn approaches over the 6 different
campaigns. The whiskers represent a 90% confidence interval on the magnitude of the
effect. The uplift model was not used for the campaigns of January and March 2021.
The higher the bar, the better the performance of the corresponding model. We see
that, due to the large uncertainty in the results, it is difficult to be sure that any model
is better than the other, with the exception of February 2021.

We had the opportunity to carry out this experiment in December 2020, and in
February, April and May 2021. For the December 2020 and the February 2021 experi-
ments, the uplift model is a X-learner, while we used the R-lower approach described in
Section 4.4.1. At the time of conducting these experiments, we had not yet obtained all
the results presented in Section 4.2 and Section 4.4. Consequently, the selection of the
uplift model was based on the information that was accessible to us during that period.

4.3.2 Results

The results of the campaigns are reported in Figure 4.4. For most campaigns, the 0%
uplift line is in the 90% confidence interval, suggesting that the hypothesis that the
campaign has no effect on churn cannot be rejected. We can only observe a positive
uplift during the May 2021 campaign. In terms of comparing the uplift and predictive
approaches, the uplift model shows slightly worse performance than the churn model
in three of the four months where both models were used. We see that in February
2021, the uplift model seems to have selected more persuadable customers than the
churn model.

These results do not allow us to conclude that the uplift model brings a consistent
advantage over the churn model. The uncertainty observed in our results can be at-
tributed to the relatively small number of customers contacted during each campaign,
coupled with the low churn rate. This situation leads to a limited number of churners
in each campaign, consequently resulting in a high uncertainty in the uplift measure-
ments.

4.4 Using reach information to improve uplift estimation

In this section, we suggest using information about the reaction of the customers to
the campaign to improve uplift estimation. In the marketing domain, the reach denotes
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𝑡𝑥

𝑦𝑟
Figure 4.5 Causal graph of customer behavior, where the reach indicator 𝑟 has the
same parents as the churn indicator 𝑦 , and can be used to improve uplift prediction.

the proportion of the population exposed to the campaign, more specifically for adver-
tisement campaigns (Farris et al., 2010). Here, we instead define reach as the reaction
of the customer to the attempted call, that is, whether or not the customer picked up
the phone and had a conversation with the phone operator. More specifically, some
customers will not pick up the phone, will hang up immediately, or, more generally,
will not respond positively to the call. This information, recorded by the call center, is
a strong marker of customer receptivity. This is related to the notion of click-through
rate (Winer, 2001) or response rate (B. J. Hansotia and Bradley Rukstales, 2002) in online
and email advertising. Although response models have been developed to improve di-
rect marketing (Bose and Chen, 2009; Guido et al., 2011; B. J. Hansotia and Bradley Ruk-
stales, 2002), the current literature on uplift modeling ignores this information during
the learning process. Expert knowledge from Orange Belgium indicates that customers
who do not pick up the phone or hang up immediately should be avoided because tar-
geting them can increase their propensity to churn.

It is important to note that the reach is only known after the campaign. Thus, it
cannot be simply added as input to the model as an additional feature. We have to
devise a dedicated approach to incorporate it into the learning process. In this sense,
reach serves as an inductive bias for the uplift model. This section investigates whether
an upliftmodel properly adapted to account for this new source of information provides
an improvement over the state of the art.

4.4.1 Strategies for integrating reach

We denote with 𝑟 = 1 reached customers, i.e., customers who picked up the phone
and had a dialogue with the phone operator. Otherwise, the customer is considered
unreached (𝑟 = 0). The causal process is represented in Fig. 4.5, where the features 𝑥
represent the individual characteristics of the customers, and 𝑡 is the call indicator.4

Although there is no direct causal link between 𝑟 and 𝑦 , there is a strong statistical
dependency between them, and consequently between reach and uplift. We present
four ways to integrate the information about reach to improve uplift estimation. The
resulting equations are summarized in Table 4.7.

Reach probability as a feature
The first approach, R-feature, consists in building a predictive model of reach from
historical data, and integrating the probability of reaching the customer, noted ̂𝑟 , among
the input features of the uplift model. We note the reach prediction model as

̂𝑟 (𝑥) ≈ 𝑃(𝑟 = 1 ∣ 𝑥 = 𝑥). (4.10)

4𝑡 is a cause of 𝑟 because a customer is necessarily unreached (𝑟 = 0) when no call attempt is made
(𝑡 = 0).
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The R-feature approach estimates the uplift as

R-feature(𝑥) = 𝑆0(𝑥, ̂𝑟 (𝑥)) − 𝑆1(𝑥, ̂𝑟 (𝑥)) (4.11)

= 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥, ̂𝑟 (𝑥) = ̂𝑟(𝑥)) − 𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥, ̂𝑟 (𝑥) = ̂𝑟(𝑥)). (4.12)

Decomposition of probability
The second approach, R-decomp, is based on the decomposition of the probability of
𝑆1(𝑥) with respect to the reach indicator:

𝑆1(𝑥) = 𝑃(𝑦1 = 1 ∣ 𝑥) (4.13)

= 𝑃(𝑟1 = 0 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) + 𝑃(𝑟1 = 1 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) (4.14)

= 𝑃(𝑟1 = 0 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) + (1 − 𝑃(𝑟1 = 0 ∣ 𝑥))𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) (4.15)

= 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) + 𝑃(𝑟1 = 0 ∣ 𝑥) [𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1)]
(4.16)

Using this decomposition, R-decomp estimates the uplift as

R-decomp(𝑥) = 𝑆0(𝑥) − 𝑆1(𝑥) (4.17)

= 𝑃(𝑦0 = 1 ∣ 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1)
− 𝑃(𝑟1 = 0 ∣ 𝑥)[𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1)]. (4.18)

The formula contains 5 terms but can be estimated with two uplift models and a simple
classifier. The first two terms, 𝑃(𝑦0 = 1 ∣ 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1), can be estimated
with a uplift model by restricting the target group to reached customers. The third
term, 𝑃(𝑟1 =∣ 𝑥), can be estimated using a predictive model of reach. The last two terms
between brackets, 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0), can also be estimated by
an uplift model, but using the reach indicator 𝑟 instead of 𝑡 as the treatment indicator
for the model.

Bounds on uplift
As discussed by Radclifte and Simpson (2008), direct interventions, especially intrusive
ones such as phone calls, can act as a trigger that leads to customer churn that could
otherwise have been prevented, or at least postponed. The experience of direct market-
ing experts at Orange Belgium confirms this hypothesis and suggests that this behavior
is typically associated with unreached customers. Therefore, not reaching a customer
has a doubly detrimental effect: the resources of the call center are wasted, and the cus-
tomer is more likely to churn than if no call had been made. This domain knowledge
may be translated into the inequality

𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Probability of churn when not reached

≥ 𝑃(𝑦0 = 1 ∣ 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Probability of churn with no action

. (4.19)

To obtain a new estimator that takes advantage of this inequality, we start by marginal-
izing 𝑆1(𝑥) over the distribution of 𝑟 :

𝑆1(𝑥) = 𝑃(𝑦1 = 1, 𝑟 = 0 ∣ 𝑥) + 𝑃(𝑦1 = 1, 𝑟 = 1 ∣ 𝑥) (4.20)

= 𝑃(𝑟1 = 0 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) + 𝑃(𝑟1 = 1 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1). (4.21)
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Table 4.7 Summary of the approaches used to integrate reach in uplift modeling.

Approach Equation

R-feature 𝑆0(𝑥, ̂𝑟 (𝑥)) − 𝑆1(𝑥, ̂𝑟 (𝑥))
R-decomp 𝑆0(𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) + 𝑃(𝑟1 = 0 ∣ 𝑥)(𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 =

1) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0))
R-upper 𝑃(𝑟1 = 1 ∣ 𝑥)(𝑆0(𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1))
R-lower 𝑃(𝑟1 = 0 ∣ 𝑥)(𝑆0(𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0))

Substituting 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0) by 𝑃(𝑦0 = 1 ∣ 𝑥), we obtain

𝑆1(𝑥) ≥ 𝑃(𝑟1 = 0 ∣ 𝑥)𝑆0(𝑥) + 𝑃(𝑟1 = 1 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1).

This is a lower bound on 𝑆1(𝑥); since 𝑈 (𝑥) = 𝑆0(𝑥)−𝑆1(𝑥), we have also an upper bound
on 𝑈 (𝑥):

𝑈 (𝑥) ≤ 𝑆0(𝑥) − 𝑆0(𝑥)𝑃(𝑟1 = 0 ∣ 𝑥) − 𝑃(𝑟1 = 1 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1). (4.22)

We can rearrange this expression as

𝑈 (𝑥) ≤ 𝑆0(𝑥)𝑃(𝑟1 = 1 ∣ 𝑥) − 𝑃(𝑟1 = 1 ∣ 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) (4.23)

= 𝑃(𝑟1 = 1 ∣ 𝑥)(𝑆0(𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1)). (4.24)

The third approach, R-upper, consists in using the upper bound as an estimation of the
uplift:

R-upper(𝑥) = 𝑃(𝑟1 = 1 ∣ 𝑥)(𝑆0(𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1)). (4.25)

Using R-upper as an uplift estimator assumes that the less-than relationship in Eq. (4.19)
is an equality, which, intuitively, indicates that unreached customers will ignore the
call attempt and behave as if no call attempt was made, viz., the probability of churn
when called and unreached is equal to 𝑆0(𝑥). Estimating Eq. (4.25) requires two models:
a simple predictive model of the reach indicator (using only the target group) and an
uplift model where the target group has been restricted to reached customers.

A symmetrical reasoning may lead to the hypothesis that a reached customer is less
likely to churn than if not contacted:

𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 1) ≤ 𝑃(𝑦0 = 1 ∣ 𝑥). (4.26)

We can derive an upper bound from this assumption and Eq. (4.14):

𝑈 (𝑥) ≥ 𝑃(𝑟1 = 0 ∣ 𝑥)(𝑃(𝑦0 = 1 ∣ 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0)). (4.27)

The fourth approach, R-lower, consists in using this lower bound as an uplift estimator:

R-lower(𝑥) = 𝑃(𝑟1 = 0 ∣ 𝑥)(𝑃(𝑦0 = 1 ∣ 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥, 𝑟1 = 0)) (4.28)
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4.4.2 Experimental setup

In this benchmark, we evaluate the approaches described in Section 4.4 on the Churn
2 dataset. We use the X-learner algorithm as the base uplift model required for the
implementation of the reach approaches, and the random forest algorithm for base
predictive models. We compare the four reach approaches against three baselines:

• X-learner: A conventional X-learner uplift model (Künzel et al., 2019) with no
information on reach.

• Outcome-RF: A random forest (Breiman, 2001) trained to predict the probability
of churn 𝑃(𝑦 = 1 ∣ 𝑥). This represents the classical predictive approach.

• Reach-RF: A random forest trained to predict the probability of reaching the
customer 𝑃(𝑟 = 1 ∣ 𝑥).

The first two baselines are the models that perform best in the benchmark of Section 4.2.
The third baseline R-target is introduced to checkwhether the reach alone can be used
to find persuadable customers. As in Section 4.2, the class imbalance between churners
and non-churners is addressed with the EasyEnsemble strategy (X.-Y. Liu, Wu, and
Zhou, 2009). To obtain a measure of the variability of the performance, we create 50
independent random splits of the dataset into training and test sets, in proportion 80%
/ 20%. Each of these splits is used to train each model, and we report the area under the
uplift curve (AUUC) on the test set, averaged over the 50 runs. We also estimate the
estimator variance and the ranking variance, as described in Section 4.2.1.

We also evaluated several variations of the models presented in Table 4.7. But, since
they did show remarkable performances, we did not include them in the results. These
variations are: i) the average of R-lower and R-upper, ii) the average of X-learner
and R-target, and iii) the product of X-learner and R-target.

4.4.3 Results

Table 4.8 reports the mean and standard deviation of the area under the uplift curve
(AUUC) over 50 runs for each model. The AUUC is also reported as a boxplot in
Fig. 4.6. We see that R-feature is the best performing model in terms of area under the
uplift curve. Among the other reach approaches, R-decomp and R-lower perform simi-
larly, while R-upper does not outperform the baselines. The two baselines X-learner
and Outcome-RF have similar performances and, as expected, Reach-RF performs quite
poorly.

R-upper has the lowest estimator variance, which might be due to the fact that
it consists of a product of the predictions of an uplift model and the predictions of a
predictive model of reach. Since both the uplift and the probability of reach are by def-
inition lower than or equal to one, their product will be smaller than any of the two
quantities separately. This is also the case for R-decomp and R-lower, which also have
a low estimator variance. However, it is surprising that X-learner has a lower vari-
ance than Outcome-RF, which is the opposite of the results in the previous experiment,
reported in Table 4.4.

As expected, the two predictive models Outcome-RF and Reach-RF have a lower
ranking variance than the uplift models. Note that R-feature has a higher ranking
variance and estimator variance than X-learner, even though the two models differ
only in that R-feature uses the probability of reach as an additional feature.
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Table 4.8 AUUC (with standard deviation) and estimator variance on the Churn 2
dataset over 50 runs. The best values (highest AUUC and lowest variances) are under-
lined.

Model AUUC (%) Estimator variance Ranking variance

R-feature 0.857 ± 0.547 8.10 × 10−4 0.150
R-decomp 0.584 ± 0.549 4.67 × 10−4 0.122
R-upper 0.427 ± 0.507 1.06 × 10−4 0.219
R-lower 0.674 ± 0.575 2.07 × 10−4 0.355
X-learner 0.541 ± 0.509 4.36 × 10−4 0.107
Outcome-RF 0.604 ± 0.621 7.06 × 10−4 0.023
Reach-RF 0.247 ± 0.397 8.46 × 10−4 0.031

R-feature R-decomp R-upper R-lower X-learner Outcome-RF Reach-RF
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Figure 4.6 Boxplots representing the distribution of the AUUC on the Churn 2 dataset
over 50 runs. The middle line represents the median, the extents of the box repre-
sents the first and third quartiles (hence, the boxes contain half of the points), and the
whiskers extend to the minimum and maximum values.

In general, the best performing model in terms of AUUC is R-feature, as it clearly
outperforms all other reach models and the three baselines. Furthermore, it has a rea-
sonable ranking variance with respect to the other uplift models. This indicates that
the reach information can be successfully exploited to improve the quality of uplift
predictions.

4.5 Conclusion

In this chapter, we conducted three experimental comparisons of uplift modeling and
the conventional predictive approach.

In the first experiment, we compared the performance of several state-of-the-art
uplift models in terms of area under the uplift curve. We observed that the predic-
tive approach is competitive or performs better than the uplift models, except in the
Churn 2 and Hillstrom datasets. The Hillstrom dataset is characterized by a less severe
class imbalance and more informative features. We hypothesize that the superiority of
the predictive approach is due to its lower variance, and, to assess this hypothesis, we
used a measure of the variance of the ranking generated by the models. The predictive
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approach has the lowest ranking variance, except on the Churn 2 dataset where it is
slightly higher than that of the modified outcome strategy. These findings indicate a
strong association between the performance of a model and the stability of its rank-
ing. Especially in scenarios characterized by outcome imbalance and uninformative
features, it appears that the bias reduction achieved through the use of uplift modeling
may not be sufficient to outweigh the performance loss due to its higher variance.

In the second experiment, we conducted several customer retention campaigns us-
ing simultaneously an uplift model and a churn prediction model, allowing us to com-
pare their performance in a real setting. This experiment was repeated over four dif-
ferent months, the first two months using an X-learner uplift model and the last two
months using the R-upper approach described in Section 4.4.1. We observed that in
three of the four campaigns, the churn model and the uplift model had very similar
performances, with an average treatment effect close to zero. The uplift showed a sig-
nificant advantage over the churn model only during the February 2021 campaign. Due
to time constraints, we did not have the opportunity to carry out this experiment with
the most promising uplift model, R-feature.

In the third experiment, we showed the potential of reach information to improve
the estimation of uplift. Reach information is not readily accessible prior to a campaign,
and, as a result, specific strategies must be employed to leverage it effectively. The
strategy showing the greatest potential, R-feature, consists in adding the predicted
probability of reaching the customer as an additional feature to an uplift model. This
strategy outperformed both the predictive approach and the X-learner uplift model,
which showed the best performance in the benchmark of Section 4.2.

The R-feature strategy has the advantage of being relevant to a wider range of
use cases than churn prevention. It is common for telecom companies to run different
campaigns using the voice call channel, such as up-sell (to propose a better product
to the customer), or cross-sell (to present additional products). A reach model can be
used in these contexts as well, while using the same training data. This is a signif-
icant advantage, both in terms of computation time and volume of data. However,
this approach requires access to records detailing the response of customers to calls,
which may not be readily available, especially for companies without prior experience
in direct marketing. Additionally, given the relatively novel nature of uplift modeling
and the limited availability of publicly accessible uplift datasets online, none of these
datasets incorporate information related to reach. Consequently, it is difficult to assess
novel approaches that exploit reach information beyond the scope of a collaborative
arrangement with a private company.

The findings from these experiments collectively indicate that uplift modeling does
not consistently outperform conventional predictive modeling, with the exception of
datasets like the Hillstrom dataset characterized by balanced outcomes and informa-
tive features. In the following chapter, we investigate this finding from a theoretical
perspective by examining various characteristics of the data that may explain the dis-
crepancy in performance between the two approaches.
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5
Theoretical analysis of uplift

modeling

Results presented in this chapter have been published in the following article: Théo Ver-
helst, Wouter Verbeke, et al. (2023). “Uplift vs. Predictive Modeling: a Theoretical
Analysis”. In: Submitted to Journal of Machine Learning Research.

In the previous chapter, we assessed the added value of causal-oriented strategies with
respect to the purely predictive approach through a series of experiments. We believe
that it is important to assess whether the expected benefit of uplift strategies (deriving
from a bias reduction in the estimation of causal effect) is still noticeable in settings such
as churn prediction where the data distribution is characterized by a large number of di-
mensions, non-linearity, class imbalance, and low-class separability. Such an empirical
comparison has few precedents in the literature (Ascarza, 2018; Devriendt, Berrevoets,
and Verbeke, 2021; Wijaya et al., 2021). There are also very few articles addressing this
question from a theoretical perspective. Fernández-Loria and Provost (2022a,b) develop
quantitative measures and qualitative arguments that indicate when the predictive ap-
proach should be preferred. We extend these papers by comprehensively treating the
question, starting from theoretical foundations and studying the influence of different
characteristics of the setting (distribution of the outcome, variance of the estimators,
etc.) on the performance of the uplift and predictive approaches.

A critical aspect of comparing the two approaches is the need for a meaningful and
sensible measure of model performance. In this chapter, we extend the work of Verbeke,
Olaya, Berrevoets, et al. (2021) by developing a new formulation of the profit generated
by a campaign in which individuals targeted by interventions are selected by a machine
learning model. By incorporating the concept of profit, we go beyond traditional evalu-
ation metrics and we consider the economic impact of decision-making strategies. Our
measure of profit generalizes Verbeke’s by accommodating varying costs and benefits
across individuals. This flexibility is beneficial, for example in churn prediction, where
prioritizing higher-value customers is crucial. By selecting an appropriate measure of
performance, we ensure a fair and accurate comparison between uplift and predictive
models, enabling decision-makers to make informed choices based on the true effec-
tiveness and suitability of each approach.
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This chapter seeks to establish firm theoretical foundations for uplift modeling
and to answer the question “When does uplift modeling outperform predictive model-
ing?”. While we focus on the example of customer churn prediction, our findings have
broad applicability across domains including marketing, telecommunications, health-
care, and finance. Our main conclusions are as follows: the estimator variance (see
Definition 2.23) plays a critical role in determining the performance of a model, and in
most cases, the predictive approach outperforms the uplift approach when the variance
of the uplift estimator exceeds a certain threshold. We also show the important impact
of three other aspects: cost sensitivity, the mutual information between the features
and the potential outcomes, and the distribution of the potential outcomes. While the
importance of cost sensitivity and the distribution of the potential outcomes has been
discussed in the literature, respectively, by Verbeke, Olaya, Berrevoets, et al. (2021)
and Fernández-Loria and Provost (2022a), to the best of our knowledge, the impact of
mutual information has not been assessed before. We show that it has an important
impact on the performance, independently of these other aspects (estimator variance,
cost sensitivity, and distribution of potential outcomes).

Note, however, that we do not address the question of how to adapt uplift modeling
to account for cost sensitivity or the other aspects mentioned above. Our contributions
pertain to model evaluation, rather thanmodel optimization. As such, it is left for future
work to assess the effectiveness of cost sensitive models in terms of the metrics devel-
oped in this chapter. On that topic, Gubela and Lessmann (2021) propose a value-driven
ranking method for targeted marketing campaigns.

The main contributions of this chapter are:

• A new formulation of the measure of profit, bringing the focus on individual cost
sensitivity and on the stochastic nature of the machine learning model used to
rank individuals (Section 5.2.2). We show its equivalence with the profit measure
developed by Verbeke, Olaya, Berrevoets, et al. (2021) in Section 5.2.3.

• A proof that the uplift curve (an evaluation curve often used in the uplift litera-
ture, see Definition 3.3) is an estimator of the measure of profit, highlighting the
strict conditions necessary for the validity of the uplift curve (Section 5.2.4).

• An empirical estimator of the measure of profit, which is a cost sensitive gener-
alization of the uplift curve (Section 5.2.5).

• A demonstration through theoretical analyses and simulations of the conditions
under which the predictive approach still outperforms uplift modeling, and, no-
tably, the important role of the mutual information between the input features
and the potential outcomes, which has not yet been discussed in the literature
(Section 5.3).

The rest of this chapter is organized as follows. Section 5.1 introduces the nota-
tions and notions used throughout this chapter. Our contributions are presented in
Sections 5.2 and 5.3: we present the new formulation of the measure of profit in Sec-
tion 5.2 and we assess when the predictive approach outperforms the uplift approach
in Section 5.3. We discuss our results and the limitations of our approach in Section 5.4.
Concluding remarks and recommendations for practitioners are given in Section 5.5.
Proofs of the theorems are provided in Appendices C and D.
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5.1 Background

In this section, we introduce the notations and present the key concepts used through-
out this chapter.

5.1.1 Notation

We use the notation presented in Section 3.1.1, where 𝑥 is a random vector of features
(or covariates), 𝑦 is the binary outcome, and 𝑡 is the assignment of treatment. We
assume the treatment assignment to be randomized (see Definition 3.1). 𝑆0 and 𝑆1 are,
respectively, the probabilities of a positive outcome in the control and target groups
(Eqs. 3.4 and 3.5), 𝑈 = 𝑆0−𝑆1 is the average uplift (Eq. 3.6), and 𝑆0(𝑥), 𝑆1(𝑥), 𝑈 (𝑥) are the
same quantities conditioned on a particular realization 𝑥 = 𝑥 (Eqs. 3.1 to 3.3), which are
learned by amachine learningmodel. Note that, for example in the literature pertaining
to retail or online advertisement, the uplift is defined as 𝑈 = 𝑆1 − 𝑆0 (and similarly
𝑈 (𝑥) = 𝑆1(𝑥) − 𝑆0(𝑥)). This choice depends on whether the probability of the positive
outcome (𝑦 = 1) should be minimized (e.g., in churn prevention) or maximized (e.g.,
in sales). The uplift is then defined so that a positive uplift corresponds to a beneficial
outcome. Sincewe apply our results mainly to churn prevention, we use the convention
𝑈 = 𝑆0 − 𝑆1.

Let ℳ be a model that is used to rank individuals such that only the individuals
with the highest scores should be targeted. The model ℳ is trained on a dataset 𝐷tr =
{(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 of 𝑁 iid1 realizations of (𝑥, 𝑦 , 𝑡). We assume that 𝐷tr is the result of
a random process and we note it as a random variable as 𝐷tr. We consider ℳ(𝑥, 𝐷tr)
as a learning algorithm taking a dataset 𝐷tr and a vector of features 𝑥 as input, and
returning a score, for example an estimation of 𝑈 (𝑥). We denote the fact thatℳ(𝑥, 𝐷tr)
is trained to estimate some function 𝑔(𝑥) as ℳ(𝑥, 𝐷tr) ≈ 𝑔(𝑥).

A threshold 𝜏 is used to determine which individuals should be targeted: the model
ℳ prescribes targeting all individuals with a score ℳ(𝑥, 𝐷tr) ≥ 𝜏 and not targeting
the remaining individuals. Since different models can provide scores with different
distributions, the threshold 𝜏 depends on the model being used. Therefore, in order to
compare the performance of different models in a consistent way, we let 𝜌 ∈ (0, 1) be
the proportion of individuals who should be targeted. We call 𝜌 the prescription rate.
The corresponding threshold 𝜏 can be determined as the smallest value that satisfies
𝑃(ℳ(𝑥, 𝐷tr) > 𝜏) ≥ 𝜌. The threshold 𝜏 is also a function of 𝐷t𝑟 , since different training
sets induce different score distributions, hence different thresholds. The dependency of
𝜏 in 𝜌 is implicit in our notation, but we explicitly note 𝜏 = 𝜏(𝐷tr), as the dependency in
the training set is important in some equations of this chapter. Therefore, we formally
define 𝜏 (𝐷tr) as

𝜏 (𝐷tr) = inf {𝜏 ′ ∶ 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏 ′) ≥ 𝜌}. (5.1)

See Fig. 5.1 for an illustration of this definition based on the cumulative distribution
function of the scores. Also, note that ℳ(𝑥, 𝐷tr) is a deterministic function of 𝑥 (for
a fixed 𝐷tr), therefore, in Eq. (5.1), ℳ(𝑥, 𝐷tr) is a random variable due to the random
nature of the population represented by the features 𝑥 . The probability 𝑃(ℳ(𝑥, 𝐷tr) >
𝜏(𝐷tr)) represents the probability that the score given to an individual selected at ran-
dom in the population is greater than the threshold 𝜏 (𝐷tr).

1The independence assumption might be violated in applications such as churn with, for example, a
word-of-mouth effect generating a second order of treatment.
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Figure 5.1 Graphical representation of the definition of 𝜏 (𝐷tr) as a function of 𝜌 from
the cumulative distribution function of ℳ(𝑥, 𝐷tr).

5.1.2 Uplift and predictive approaches

We designate by predictive approach the process of ranking individuals using a machine
learning model ℳ𝑝 that estimates the conditional probability 𝑆0(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 =
𝑥):

ℳ𝑝(𝑥, 𝐷tr) ≈ 𝑆0(𝑥). (5.2)

Andwe designate by uplift approach the process of ranking individuals using amachine
learning model ℳ𝑢 that estimates the uplift 𝑈 (𝑥) = 𝑆0(𝑥) − 𝑆1(𝑥):

ℳ𝑢(𝑥, 𝐷tr) ≈ 𝑈 (𝑥). (5.3)

Note that the definition of these approaches can vary in the literature. For example,
Fernández-Loria and Provost (2022a) focus on online advertisement, in which the out-
come should be maximized. As such, they define three approaches: the treatment differ-
ence (TD) approach, which ranks individuals by 𝑆1(𝑥)− 𝑆0(𝑥) (the opposite of the uplift
approach as defined in this chapter), the outcome most (OM) approach, which ranks
individuals by 𝑆1(𝑥), and the outcome least approach (OL), which ranks individuals by
1 − 𝑆0(𝑥). The TD and OM approaches are equivalent to, respectively, our uplift and
predictive approaches, up to a change of label for the values of 𝑡 .

5.2 Measure of profit

This section presents our contributions to the evaluation of the performance of a model
in the context of causal decision making. We start by introducing the concept of causal
profit for individuals, which measures the incremental profit gained by targeting spe-
cific individuals with interventions. Next, we extend this definition to the campaign
level, where the cumulative profit is assessed by considering the overall impact of tar-
geting a group of individuals. To establish the connection between the causal profit
and existing measures in the literature, we first prove its equivalence with Verbeke’s
original definition of profit (Verbeke, Olaya, Berrevoets, et al., 2021). Then, we prove
that the uplift curve is an estimator of the causal profit, under a specific assumption
about the values of costs and benefits generated by individuals. Finally, we propose an
empirical estimator of the profit measure that leverages the data and a ranking model
to estimate the potential profit of targeting specific individuals. This new empirical
performance metric is a cost sensitive generalization of the uplift curve.
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5.2.1 Individual profit

Our measure of profit for a campaign, presented in the next section, relies on the no-
tion of individual causal profit. This notion is called revenue uplift by Gubela and Less-
mann (2021) and Gubela, Lessmann, and Jaroszewicz (2020). It is a generalization of
the individual uplift 𝑈 (𝑥) to cost sensitive settings. Our contribution with respect to
the definition by Gubela, Lessmann, and Jaroszewicz lies in its definition in terms of a
cost-benefit matrix, similarly to the cost-benefit matrix CB defined by Verbeke, Olaya,
Berrevoets, et al. (2021), presented in Section 3.1.3. We extend the definition of the
cost-benefit matrix to allow it to vary between individuals. This generalization of CB
to the individual level is useful in settings such as churn prediction, where different
customers have different values (e.g., some customers might have a more expensive
tariff plan than others); hence, in order to maximize profits, retention efforts should be
focused on high-value customers.

Definition 5.1 (Cost-benefit matrix). The cost-benefit matrix CB(𝑥) expresses the sum
of the costs and benefits for the two possible actions (𝑡 = 0 or 𝑡 = 1) and the two possible
outcomes (𝑦 = 0 or 𝑦 = 1) for an individual with features 𝑥 = 𝑥 . It is noted

CB(𝑥) = [
𝑡 = 0 𝑡 = 1

CB00(𝑥) CB01(𝑥) 𝑦 = 0
CB10(𝑥) CB11(𝑥) 𝑦 = 1] (5.4)

Note that although the actual value generated by an individual is inherently ran-
dom (e.g., the data consumption of a customer for the next month is unknown), CB(𝑥)
expresses the expected cost-benefits for all individuals with features 𝑥 = 𝑥 . From this
matrix and the probability distribution of the outcome 𝑦 , one can define the expected
profit that a given action generates:

Definition 5.2 (Individual profit). When the action 𝑡 = 𝑡 is carried out for an individual
𝑥 = 𝑥 , we define the individual profit of that action as

𝜋𝑡(𝑥) = CB0𝑡(𝑥)𝑃(𝑦 𝑡 = 0 ∣ 𝑥) + CB1𝑡(𝑥)𝑃(𝑦 𝑡 = 1 ∣ 𝑥) (5.5)

= CB0𝑡(𝑥)(1 − 𝑆𝑡(𝑥)) + CB1𝑡(𝑥)𝑆𝑡(𝑥). (5.6)

Intuitively, the equation above expresses the individual profit as the cost-benefit
value when the customer does not churn multiplied by the probability that they indeed
do not churn, plus the cost-benefit value when the customer churns multiplied by the
probability that they churn.

As discussed by Verbeke, Olaya, Berrevoets, et al. (2021), the performance of a
model should be measured relative to a baseline scenario, rather than in absolute terms.
That is because, even when no action is carried out, some outcome will always occur
and, therefore, the success of an action should be compared with the outcome resulting
from the absence of action. Formally, we name this difference the individual causal
profit:

Definition 5.3 (Individual causal profit). The individual causal profit for an individual
with features 𝑥 = 𝑥 is defined as

𝜋(𝑥) = 𝜋1(𝑥) − 𝜋0(𝑥). (5.7)
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We can readily develop this expression to obtain

𝜋(𝑥) =CB01(𝑥)(1 − 𝑆1(𝑥)) + CB11(𝑥)𝑆1(𝑥) − CB00(𝑥)(1 − 𝑆0(𝑥)) − CB10(𝑥)𝑆0(𝑥) (5.8)

We can see that the causal profit is a function of 𝑆0(𝑥), 𝑆1(𝑥) and CB(𝑥). This quantity
was defined similarly by Verbeke, Olaya, Berrevoets, et al. (2021, Eq. 42). We now illus-
trate these definitions in the context of churn prevention with marketing campaigns.

Example 5.4. Let us suppose that the costs and benefits of a churn mitigation cam-
paign are defined as follows:

• Calling a customer has a fixed operating cost 𝐶 ;
• We gain value 𝑉0(𝑥) when the customer does not churn, a value called the cus-

tomer lifetime value (Gupta et al., 2006), and we gain 𝑉1(𝑥) when they churn
(typically €0);

• We offer a marketing incentive of cost 𝐼 (𝑥) to the customer when we call them
and if they do not churn.

From this, we can compute the cost-benefit matrix CB(𝑥) as

CB(𝑥) = [
𝑡 = 0 𝑡 = 1
𝑉0(𝑥) 𝑉0(𝑥) − 𝐶 − 𝐼 (𝑥) 𝑦 = 0
𝑉1(𝑥) 𝑉1(𝑥) − 𝐶 𝑦 = 1]

and the causal profit 𝜋(𝑥) is
𝜋(𝑥) = −𝐶 − 𝐼 (𝑥) − (𝑉0(𝑥) − 𝐼 (𝑥) − 𝑉1(𝑥))𝑆1(𝑥) + (𝑉0(𝑥) − 𝑉1(𝑥))𝑆0(𝑥)

= (𝑉0(𝑥) − 𝑉1(𝑥))𝑈 (𝑥) − 𝐶 − 𝐼 (𝑥)𝑃(𝑦1 = 0 ∣ 𝑥).
From this last equation, we can see that if the magnitude of the uplift and the expected
lifetime value of the customer are greater than the expected cost of the retention action,
then we can expect a positive causal profit by calling the customer. To show this, let us
suppose that the lifetime value of a given customeris 𝑉0(𝑥) = €120, 𝑉1(𝑥) = €0, the call
has an operating cost 𝐶 = €1, the marketing incentive has a cost 𝐼 (𝑥) = €20, and this
customer has the probabilities of churn 𝑆0(𝑥) = 0.15 and 𝑆1(𝑥) = 0.05, hence an uplift
of 𝑈 (𝑥) = 0.1. The cost-benefit matrix is

CB(𝑥) = [
𝑡 = 0 𝑡 = 1
120 99 𝑦 = 0
0 −1 𝑦 = 1]

and the causal profit is 𝜋(𝑥) = 120 × 0.1 − 1 − 20 × 0.95 = −8. Given the low uplift of
this customer and the high cost of the incentive, this customer should therefore not be
targeted by this marketing campaign.

5.2.2 Campaign profit

The causal profit 𝜋(𝑥), as per Definition 5.3, is defined for an individual 𝑥 = 𝑥 , but
in business applications, a campaign is carried out on a large number of different in-
dividuals. As presented in Section 3.1.3, Verbeke, Olaya, Guerry, et al. (2022) define a
cost sensitive measure of the causal profit of a campaign based on the causal confusion
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matrix and the cost-benefit matrix. In this section, we provide another definition of the
causal profit of a campaign, whichwe then show to be equivalent to the definition given
by Verbeke et al. Our contribution lies in the fact that our measure emphasizes the indi-
vidual causal profit, the influence of the individual cost and benefits, and the stochastic
nature of the machine learning estimator. We also give a formal proof that the uplift
curve, which is widely used in the uplift literature (see Section 3.1.3), is equivalent to
the measure of profit. In particular, this equivalence highlights the strict assumption
necessary for the validity of the uplift curve as an evaluation measure.

As defined in Section 5.1.1, let us assume we have a prescription rate 𝜌, that is,
the action do(𝑡 = 1) is carried out on the proportion 𝜌 of individuals with the highest
scores, and the action do(𝑡 = 0) is carried out on the other individuals. If we have
a population of 𝑁 individuals, then ⌈𝑁𝜌⌉ individuals will be targeted. Then, given a
predictive model ℳ(𝑥, 𝐷tr), we can find the threshold 𝜏 (𝐷tr) on the scores that would
separate the proportion 𝜌 of individuals with the highest scores from the rest. As for
the individual profit defined in Section 5.2.1, it is important to notice that even if a
campaign is not carried out, some profit will be generated anyway. Therefore, the
performance of an uplift model should be evaluated in terms of profit with respect to a
baseline scenario where no action is taken. Here, we first define the profit induced by
carrying out the campaign (Definition 5.5) and the profit of the baseline scenario where
the campaign is not carried out (Definition 5.6). Finally, the causal profit is defined to
be the difference between these two quantities (Definition 5.7).

Definition 5.5 (Campaign action profit). The action profit of a campaign with a pre-
scription rate 𝜌 and a model ℳ trained on a dataset 𝐷tr is defined as

Π1(𝜌, 𝐷tr) = 𝜌𝔼𝑥 [𝜋1(𝑥) ∣ ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] + (1 − 𝜌)𝔼𝑥 [𝜋0(𝑥) ∣ ℳ(𝑥, 𝐷tr) < 𝜏(𝐷tr)]
(5.9)

where 𝜏 (𝐷tr) is defined as in Eq. (5.1).

Intuitively, this quantity is the sum of the expected profit of the group of individuals
being targeted (i.e., those with a score ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)), and the expected profit of
the group of individuals not being targeted (i.e., those with a score ℳ(𝑥, 𝐷tr) < 𝜏(𝐷tr)).
It is important to note that the quantity in Definition 5.5, as well as in the following
definitions, is independent of the size of the population. As such, Eq. (5.9) represents
the expected profit generated, on average, per individual. As a very simple example, if
we have a campaign on a population where targeted individuals generate on average a
profit of €20, and non-targeted individuals generate on average €10, a prescription rate
of 𝜌 = 0.5 would result in an action profit Π1(𝜌, 𝐷tr) = 0.5 × €10 + 0.5 × €20 = €15.

Now, we define the baseline profit of the campaign as follows.

Definition 5.6 (Campaign baseline profit). The baseline profit of running no campaign
is defined as

Π0 = 𝔼𝑥 [𝜋0(𝑥)]. (5.10)

The causal profit of the campaign is logically defined as the difference between
these two quantities.

Definition 5.7 (Campaign causal profit). The causal profit of a campaign with a pre-
scription rate 𝜌 and a model ℳ trained on a dataset 𝐷tr is defined as

Π(𝜌, 𝐷tr) = Π1(𝜌, 𝐷tr) − Π0. (5.11)
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Now, recall that the training set 𝐷tr is fixed in the previous definitions, which does
not take into account the stochastic nature of the sampling process of 𝐷tr. We would
like to consider the training set as a random variable, which leads the model ℳ to
provide different scores depending on the realization of the training set. This general-
ization is necessary if one wants to formalize the bias and variance of the estimator ℳ,
as presented in Definitions 2.22 and 2.23, Section 2.3.6. To the best of our knowledge,
none of the evaluation measures for uplift modeling in the literature takes into account
the random nature of 𝐷tr. This generalization is essential to the comparison of the up-
lift and predictive approaches in Section 5.3. Concretely, we define the expected causal
profit as the expected value of the causal profit over the distribution of 𝐷tr.

Definition 5.8 (Campaign expected causal profit). The expected causal profit of a cam-
paign with a prescription rate 𝜌 and a model ℳ trained on a random dataset 𝐷tr is
defined as

Π(𝜌) = 𝔼𝐷tr
[Π(𝜌, 𝐷tr)]. (5.12)

These various definitions can be unwrapped and expressed in terms of 𝜋(𝑥) (see
Definition 5.3) and the score ℳ(𝑥, 𝐷tr) over the distribution of 𝑥 . In particular, the
causal profit can be computed from the causal profit of only the targeted individuals.
This is formalized in the following theorem.

Theorem 5.1. Let the model ℳ(𝑥, 𝐷tr) be a continuous random variable for all realiza-
tions 𝐷tr of 𝐷tr. The causal profit can be expressed as

Π(𝜌, 𝐷tr) = ∫𝒳 𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥 (5.13)

= 𝔼𝑥 [𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)]] (5.14)

where 𝜏 (𝐷tr) is defined as in Eq. (5.1), and the expected causal profit can be expressed as2

Π(𝜌) = ∫𝒳 𝜋(𝑥)𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) d𝑥 (5.15)

= 𝔼𝑥 [𝜋(𝑥)𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr))]. (5.16)

Proof. Let 𝑓𝑥 (⋅) be the probability density function of 𝑥 . Using the definition of the
conditional expected value (Definition 2.2), we can develop Π1(𝜌, 𝐷tr) in Eq. (5.9) as

Π1(𝜌, 𝐷tr) =
𝜌

𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) ∫
𝑓𝑥 (𝑥)𝜋1(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥

+ 1 − 𝜌
𝑃(ℳ(𝑥, 𝐷tr) < 𝜏(𝐷tr)) ∫

𝑓𝑥 (𝑥)𝜋0(𝑥)𝕀[ℳ(𝑥, 𝐷tr) < 𝜏(𝐷tr)] d𝑥. (5.17)

ℳ(𝑥, 𝐷tr) is a continuous random variable, therefore its cumulative distribution func-
tion is nondecreasing. Therefore, the value 𝜏 (𝐷tr) that satisfies its definition 𝜏 (𝐷tr) =
inf {𝜏 ′ ∶ 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏 ′) ≥ 𝜌} in fact satisfies exactly 𝜌 = 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)).

2Note that in Eqs. (5.15) and (5.16), the probability 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) is taken over the distribution
of training sets 𝐷tr.
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Table 5.1 Expected profits of the population of six individuals from Example 5.9.

𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6)
𝜋0(𝑥) −0.1 0.1 0.15 0.1 0.2 0
𝜋1(𝑥) 0.2 0.05 −0.05 0.1 −0.1 0.1
𝜋(𝑥) 0.3 −0.05 −0.2 0 −0.3 0.1

Hence, Eq. (5.17) simplifies to

Π1(𝜌, 𝐷tr)
= ∫ 𝑓𝑥 (𝑥)𝜋1(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥 + ∫ 𝑓𝑥 (𝑥)𝜋0(𝑥)𝕀[ℳ(𝑥, 𝐷tr) < 𝜏(𝐷tr)] d𝑥

= ∫ 𝑓𝑥 (𝑥)(𝜋1(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] + 𝜋0(𝑥)(1 − 𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)])) d𝑥

= ∫ 𝑓𝑥 (𝑥)(𝜋0(𝑥) + 𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)]) d𝑥

= Π0 + ∫𝒳 𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥.

Therefore, the causal profit of the campaign can be expressed as

Π(𝜌, 𝐷tr) = Π1(𝜌, 𝐷tr) − Π0 = ∫𝒳 𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥.

The expected causal profit can be developed as

Π(𝜌) = 𝔼𝐷tr
[Π(𝜌, 𝐷tr)]

= 𝔼𝐷tr
[∫𝒳 𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)] d𝑥]

= ∫𝒳 𝜋(𝑥)𝔼𝐷tr
[𝕀[ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)]] d𝑥

= ∫𝒳 𝜋(𝑥)𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) d𝑥.

Let’s illustrate these definitions and Theorem 5.1 with a numerical example.

Example 5.9. Let us suppose that we have a population of six individuals with feature
values 𝑥(1), … , 𝑥(6). The expected profits are given in Table 5.1, and the resulting rank-
ing from a model ℳ is depicted in Fig. 5.2. Note that the ranking provided by ℳ is
based here on the expected profit, but in general this not always the case.

In this example, we use a prescription rate of 𝜌 = 0.5. As such, we obtain a threshold
𝜏 (𝐷tr) that prescribes the treatment 𝑡 = 1 to the three individuals with the highest score
ℳ(𝑥, 𝐷tr) and prescribes 𝑡 = 0 to the three remaining individuals. We see from Fig. 5.2
that the treated individuals are those with features 𝑥(2), 𝑥(6) and 𝑥(1). The action profit
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ℳ(𝑥, 𝐷tr)

- -∘ : 𝜋0(𝑥)
—• : 𝜋1(𝑥)0.1

−0.1 𝜏 (𝐷tr)

∘

•

𝑥 (5)

∘

•

𝑥 (3)

∘•
𝑥 (4)

∘•
𝑥 (2)

∘
•

𝑥 (6)

∘

•
𝑥 (1)

Not targeted Targeted

Figure 5.2 Ranking of the population of 6 individuals from Example 5.9. The profit
of each individual (vertical axis) is plotted with respect to its score (horizontal axis).
Individual action profits and individual baseline profits are represented, respectively,
by full and hollow dots.

of the campaign (Definition 5.5) is

Π1(𝜌, 𝐷tr) =𝜌 1
3 (𝜋1(𝑥(2)) + 𝜋1(𝑥(6)) + 𝜋1(𝑥(1)))

+ (1 − 𝜌)13 (𝜋0(𝑥(5)) + 𝜋0(𝑥(3)) + 𝜋0(𝑥(4)))

=1
6(0.05 + 0.1 + 0.2 + 0.2 + 0.15 + 0.1) = 0.133…

Performing this campaign produces an average profit of 0.133… per individual. But
this should be contrasted with the baseline profit (Definition 5.6):

Π0 = 1
6

6
∑
𝑖=1

𝜋0(𝑥(𝑖)) = 0.45
6 = 0.075.

This represents a significant profit, even though no customers were contacted. The
causal profit, in this example, is Π(𝜌, 𝐷tr) = Π1(𝜌, 𝐷tr) − Π0 = 0.05833… , indicating
that it is still beneficial to perform the campaign. From Theorem 5.1, we know that this
quantity depends only on the causal profit of the targeted individuals, with indices 2, 6
and 1 in this example. We can verify this, by applying Eq. (5.14):

Π(𝜌, 𝐷tr) = 1
6 (𝜋(𝑥(2)) + 𝜋(𝑥(6)) + 𝜋(𝑥(1))) = 1

6(−0.05 + 0.1 + 0.3) = 0.05833…

In this example, the prescription rate 𝜌 can be adjusted to further increase the causal
profit: with 𝜌 = 1/3, only 𝑥(1) and 𝑥(6) would be targeted and this would result in a
causal profit of 0.066…

5.2.3 Equivalence with the profit from Verbeke et al.

The profit measure developed in the previous section is mostly equivalent to the profit
measure CP(𝜏 , 𝐷tr) developed by Verbeke, Olaya, Guerry, et al. (2022), defined in Defi-
nition 3.5. The main technical difference is that our measureΠ(𝜌, 𝐷tr) naturally accepts
individual variations of the cost-benefit matrix CB(𝑥), that is, an instance-dependent
cost-benefit matrix. Another advantage of our profit measure comes from Theorem 5.1,
which shows that the profitmeasure can be expressed asΠ(𝜌) = 𝔼𝑥 [𝜋(𝑥)𝑃(ℳ(𝑥, 𝐷tr) ≥
𝜏(𝐷tr))], highlighting the fact that the profit is determined by two terms: the indi-
vidual profit 𝜋(𝑥), which is intrinsic to the population, and the (stochastic) estimator
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ℳ(𝑥, 𝐷tr). We discuss this aspect in detail in Section 5.3.1. We now show the equiva-
lence of Π(𝜌, 𝐷tr) with Verbeke’s measure.

Theorem 5.2. Let CB(𝑥) be identical for all 𝑥 , that is, CB(𝑥) = CB. For any model
ℳ training on a set 𝐷tr, and for any threshold 𝜏 , we have CP(𝜏 , 𝐷tr) = Π(𝜌, 𝐷tr) with
𝜌 = 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏).
Proof. We use the notation described in Section 3.1.3, where 𝐹𝐷tr𝑦𝑡 is the cumulative
distribution function of the score from a modelℳ trained on a data set 𝐷tr, conditional
on a particular realization of the potential outcome 𝑦 𝑡 = 𝑦 (Eq. 3.22). Also, CF(𝜏 , 𝐷tr)
is the causal confusion matrix (Eqs. 3.23 and 3.25), E(𝜏 , 𝐷tr) is the causal effect matrix
(Eq. 3.24), and ⊕ denotes the sum of the components of the componentwise product of
two matrices (Eq. 3.27). First, from Eq. (3.28), we develop

CP(𝜏 , 𝐷tr) = E(𝜏 , 𝐷tr) ⊕ CB = CF(𝜏 , 𝐷tr) ⊕ CB−CF(∞, 𝐷tr) ⊕ CB .
Let’s expand the two terms of this difference separately. The first term is

CF(𝜏 , 𝐷tr) ⊕ CB =(1 − 𝑆0)𝐹𝐷tr00 (𝜏 )CB00 +𝑆0𝐹𝐷tr10 (𝜏 )CB10
+ (1 − 𝑆1)(1 − 𝐹𝐷tr01 (𝜏 ))CB01 +𝑆1(1 − 𝐹𝐷tr11 (𝜏 ))CB11 .

Let’s focus on

(1 − 𝑆0)𝐹𝐷tr00 (𝜏 ) = (1 − 𝑆0)𝑃(ℳ(𝑥, 𝐷tr) < 𝜏 ∣ 𝑦0 = 0)
= 𝑃(ℳ(𝑥, 𝐷tr) < 𝜏 , 𝑦0 = 0)
= 𝑃(𝑦0 = 0 ∣ ℳ(𝑥, 𝐷tr) < 𝜏)𝑃(ℳ(𝑥, 𝐷tr) < 𝜏)
= 𝑃(𝑦0 = 0 ∣ ℳ(𝑥, 𝐷tr) < 𝜏)(1 − 𝜌)
= 𝔼[(1 − 𝑆0(𝑥)) ∣ ℳ(𝑥, 𝐷tr) < 𝜏](1 − 𝜌).

Similarly, we can show that

𝑆0𝐹𝐷tr10 (𝜏 ) = 𝔼[𝑆0(𝑥) ∣ ℳ(𝑥, 𝐷tr) < 𝜏](1 − 𝜌)
(1 − 𝑆1)(1 − 𝐹𝐷tr01 (𝜏 )) = 𝔼[(1 − 𝑆1(𝑥)) ∣ ℳ(𝑥, 𝐷tr) ≥ 𝜏]𝜌

𝑆1(1 − 𝐹𝐷tr11 (𝜏 )) = 𝔼[𝑆1(𝑥) ∣ ℳ(𝑥, 𝐷tr) ≥ 𝜏)]𝜌.
Hence CF(𝜏 , 𝐷tr) ⊕ CB can be expressed as

CF(𝜏 , 𝐷tr) ⊕ CB =𝔼[(1 − 𝑆0(𝑥))CB00 +𝑆0(𝑥)CB10 ∣ ℳ(𝑥, 𝐷tr) < 𝜏](1 − 𝜌)
+ 𝔼[(1 − 𝑆1(𝑥))CB01 +𝑆1(𝑥)CB11 ∣ ℳ(𝑥, 𝐷tr) ≥ 𝜏]𝜌

=𝔼[𝜋0(𝑥) ∣ ℳ(𝑥, 𝐷tr) < 𝜏](1 − 𝜌) + 𝔼[𝜋1(𝑥) ∣ ℳ(𝑥, 𝐷tr) ≥ 𝜏]𝜌
=Π1(𝜌, 𝐷tr).

We can use the linearity of the expected value operator to show

CF(∞, 𝐷tr) ⊕ CB = (1 − 𝑆0)CB00 +𝑆0 CB10 = (1 − 𝔼[𝑆0(𝑥)])CB00 +𝔼[𝑆0(𝑥)]CB10
= 𝔼[(1 − 𝑆0(𝑥))CB00 +𝑆0(𝑥)CB00] = 𝔼[𝜋0(𝑥)] = Π0.

Wrapping up, we have

CP(𝜏 , 𝐷tr) = CF(𝜏 , 𝐷tr) ⊕ CB−CF(∞, 𝐷tr) ⊕ CB = Π1(𝜌, 𝐷tr) − Π0 = Π(𝜌, 𝐷tr)
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This theorem shows that two seemingly different definitions of the profit of a cam-
paign lead to the same mathematical quantity. We hope that this firmly establishes
the measure of profit as the most general measure of performance for uplift models.
Given its generality, in particular stemming from the use of a cost-benefit matrix, the
profit measure subsumes most other performance metrics developed in the literature
(Fernández-Loria and Provost, 2022b; Gubela, Lessmann, and Jaroszewicz, 2020; Haupt
and Lessmann, 2022), which are reviewed in Section 3.1.3.

5.2.4 Relationship with the uplift curve

The uplift curve, as defined in Definition 3.3, is widely used in the literature to evaluate
the performance of uplift models (Gutierrez and Gérardy, 2016). While it has been
used for more than 20 years (V. S. Y. Lo, 2002), its definition has always been accepted
without a formal proof of its validity. Proving this validity requires a definition of
the underlying objective of the campaign, and a demonstration of the correspondence
between this objective and the uplift curve. Verbeke, Olaya, Berrevoets, et al. (2021)
propose the causal profit as the definition of the underlying objective of the campaign,
and we provide another definition of causal profit in Definition 5.8. In this section, we
demonstrate that the uplift curve converges to the measure of profit as the number
of samples in the test set increases. Importantly, this convergence is true only under
a strong assumption about the cost-benefit matrix, which we call the unitary value
assumption.

Definition 5.10 (Unitary value assumption). The unitary value assumption posits that
the cost-benefit matrix does not depend on 𝑥 and is

CB(𝑥) = [1 1
0 0] (5.18)

Intuitively, the unitary value assumption represents the case where all individuals
have an equal value, only the value of the outcome 𝑦 should be taken into account, and
the treatment has no cost. These assumptions are rather restrictive, especially the last
one. Definition 5.10 has the following corollary.

Result 5.3. Under the unitary value assumption, the causal profit 𝜋(𝑥) is equal to the
uplift 𝑈 (𝑥).
Proof. From Eq. (5.8), by replacing the values of CB(𝑥), we obtain

𝜋(𝑥) = 1 − 𝑆1(𝑥) − (1 − 𝑆0(𝑥)) = 𝑆0(𝑥) − 𝑆1(𝑥) = 𝑈 (𝑥).

We are now ready to give the main theorem of this section.

Theorem 5.4. Let 𝐷tr be a training set of iid realizations of (𝑥, 𝑦 , 𝑡), and let 𝐷te be a
test set of 𝑁 tuples (𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖)) iid to (𝑥, 𝑦 , 𝑡), where 𝑡 is randomized (see Definition 3.2).
Let ℳ be a model such that ℳ(𝑥, 𝐷tr) is a continuous random variable. Let 𝜌 ∈ (0, 1)
be the prescription rate, and 𝑘 = ⌈𝑁𝜌⌉. Under the unitary value assumption, the value
of the uplift curve at index 𝑘, noted Uplift(𝑘, 𝐷tr, 𝐷te), converges to the causal profit of a
campaign at the corresponding prescription rate 𝜌. This is expressed formally as

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te) = Π(𝜌, 𝐷tr) in probability. (5.19)
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Due to its length, the proof is given in Appendix C. This theorem establishes a the-
oretical foundation for the uplift curve, which is widely used in the uplift literature. It
also shows that the unitary value assumption is necessary for the validity of the uplift
curve, an assumption which has not been explicitly formulated before. We argue that
this assumption, and in particular the implication that the treatment has no cost, might
not hold for a large number of practical applications. For example, in churn predic-
tion, different customers represent different values for the company. Marketing efforts
should be focused on customers sensitive to the action, and who represent a large value.
The profit measure takes these two aspects into account, whereas the uplift curve dis-
regards the value of the customer. In Section 3.1.4, we will illustrate through simulated
examples that the effectiveness of both uplift and predictive approaches is significantly
influenced by the value of the cost-benefit matrix. This underscores the importance of
assessing whether the unitary value assumption holds in practical scenarios.

5.2.5 Empirical profit curve

In this section, we propose an empirical estimator of the measure of profit as a general-
ization of the uplift curve to an arbitrary cost-benefit matrix. We use a notation similar
to that in the definition of the uplift curve (Definition 3.3).

Definition 5.11 (Empirical profit curve). Let 𝐷te = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 be a dataset of
𝑁 tuples of random variables distributed identically to (𝑥, 𝑦 , 𝑡), such that the treatment
𝑡 is randomized. Let ℳ be a model trained on a dataset 𝐷tr, and let 𝐷te be sorted in
decreasing order according to ℳ: for any 𝑖 < 𝑗, we have ℳ(𝑥(𝑖), 𝐷tr) ≥ ℳ(𝑥(𝑗), 𝐷tr).
The empirical profit curve is defined, for 𝑘 ∈ {1, … , 𝑁 }, as

Π̃(𝑘, 𝐷tr, 𝐷te) = ( ̃𝑟0(𝑘)
𝑛0(𝑘)

− ̃𝑟1(𝑘)
𝑛1(𝑘)

) 𝑘 (5.20)

with 𝑛𝑡(𝑘) defined as in Definition 3.3, and

̃𝑟 𝑡(𝑘) =
𝑘
∑
𝑖=1

(CB0𝑡(𝑥(𝑖))(1 − 𝑦 (𝑖)) + CB1𝑡(𝑥(𝑖))𝑦 (𝑖)) 𝕀[𝑡(𝑖) = 𝑡]. (5.21)

It is easy to see that this curve is equivalent to the uplift curve under the uni-
tary value assumption. Indeed, in this case, we have CB(𝑖)

00 = 1 and CB(𝑖)
10 = 0, thus

̃𝑟0(𝑘) = 𝑟0(𝑘). Also, CB(𝑖)
01 = 1 and CB(𝑖)

11 = 0, thus ̃𝑟1(𝑘) = 𝑟1(𝑘). Therefore, Eq. (5.20)
reduces to Eq. (3.18). Theorem 5.4 shows the convergence of the uplift curve to the
causal profit under the unitary value assumption; however, we do not have a proof of
whether the empirical profit curve converges to the causal profit without the unitary
value assumption.

An important advantage of this empirical estimator is that only the values of the
cost-benefit matrix relating to the observed outcome need to be defined: for a given
individual with 𝑦 (𝑖) = 𝑦 and 𝑡(𝑖) = 𝑡 , only the value CB(𝑖)

𝑦 𝑡 needs to be known. This is
especially interesting when the profit in counterfactual scenarios cannot be computed
with certainty. For example, if we contacted (𝑡 = 1) a customer 𝑥 = 𝑥 who did not
churn (𝑦 = 0), and we evaluate their associated benefit minus the cost of the marketing
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action as, say, 42, then we can fill one cell of the cost-benefit matrix as follows:

CB(𝑥) = [
𝑡 = 0 𝑡 = 1
? 42 𝑦 = 0
? ? 𝑦 = 1]

The interrogation marks denote unknown values. Even this partial information is suf-
ficient to estimate the empirical profit curve, since only the term CB01(𝑥) will be used
in Eq. (5.21) for this customer.

5.3 Uplift vs predictive approach

In this section, we discuss the different aspects that influence the profitmeasure, andwe
apply this discussion to the comparison between the uplift and predictive approaches.
In Section 5.3.1, we discuss the profitmeasure in general terms, by giving some intuition
on its formula. Then in Sections 5.3.2 and 5.3.3, we compare the predictive approaches
in two different simulations of increasing complexity. The simpler simulation of Sec-
tion 5.3.2 uses a normal distribution for the features and the noise terms, while the
more complex simulation of Section 5.3.3 is based on a Dirichlet distribution, which
provides more flexibility and allows us to draw more general conclusions.

5.3.1 Parameters influencing the profit measure

The primary contribution of our profit measure lies in its ability to clearly illustrate the
impact of different components, thereby providing better insights into the performance
of a model. Recall from Theorem 5.1 that the expected causal profit generated by a
model ℳ is expressed as

Π(𝜌) = 𝔼𝑥 [𝜋(𝑥)𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr))]. (5.22)

We discuss in turn each of the two components in the expected value operator: the indi-
vidual profit 𝜋(𝑥) and the probability distribution of the scores 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)).

Individual profit 𝜋(𝑥)
𝜋(𝑥) represents the causal profit of an individual with features 𝑥 . This is specific to the
customer population of the campaign and does not depend on ℳ. Going back to the
definition of 𝜋(𝑥) (Definition 5.3), we have

𝜋(𝑥) =CB01(𝑥)(1 − 𝑆1(𝑥)) + CB11(𝑥)𝑆1(𝑥) − CB00(𝑥)(1 − 𝑆0(𝑥)) − CB10(𝑥)𝑆0(𝑥).
It is clear that the cost-benefit matrix and the distribution of the conditional proba-
bilities 𝑆0(𝑥) and 𝑆1(𝑥) have an influence on the distribution of 𝜋(𝑥). In particular,
when the cost-benefit matrix CB(𝑥) is the same for all values of 𝑥 , only the conditional
probabilities 𝑆0(𝑥) and 𝑆1(𝑥) matter. We will use the mutual information, defined in
Definition 2.9, to make the following discussion clearer. It is defined as, for 𝑡 = 0, 1,

𝐼 (𝑥, 𝑦 𝑡) = 𝐻(𝑦 𝑡) − 𝐻(𝑦 𝑡 ∣ 𝑥) (5.23)

= −𝑃(𝑦 𝑡 = 0) log 𝑃(𝑦 𝑡 = 0) − 𝑃(𝑦 𝑡 = 1) log 𝑃(𝑦 𝑡 = 1)
+ ∫𝒳 𝑃(𝑦 𝑡 = 0 ∣ 𝑥) log 𝑃(𝑦 𝑡 = 0 ∣ 𝑥) + 𝑃(𝑦 𝑡 = 1 ∣ 𝑥) log 𝑃(𝑦 𝑡 = 1 ∣ 𝑥) d𝑥,

(5.24)
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which is a function of the prior probabilities 𝑆𝑡 = 𝑃(𝑦 𝑡 = 1) and the posterior probabil-
ities 𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥). Recall that both 𝐻(𝑦 𝑡) and 𝐻(𝑦 𝑡 ∣ 𝑥) are positive. Let us
consider the distribution of 𝑦 𝑡 to be fixed and, hence, 𝐻(𝑦 𝑡) to be constant, leading us
to consider three different cases:

• The mutual information 𝐼 (𝑥; 𝑦 𝑡) is maximum, corresponding to 𝐻(𝑦 𝑡 ∣ 𝑥) = 0.
In this case, the scores 𝑆𝑡(𝑥) are either 0 or 1, and we can perfectly distinguish
between the four counterfactual categories of individuals: persuadable, do-not-
disturb, sure thing, and lost cause. The problem of optimal targeting is solved,
because we can select only the persuadable individuals.

• The mutual information is zero, corresponding to the case where 𝐻(𝑦 𝑡 ∣ 𝑥) =
𝐻(𝑦 𝑡). In this case, the scores 𝑆𝑡(𝑥) are equal to 𝑆𝑡 for all values of 𝑥 . Since we
also assumed CB(𝑥) to be the same for all 𝑥 , the causal profit 𝜋(𝑥) is the same
for all 𝑥 . All individuals have the same individual profit, and there is no point in
trying to rank them. Anymodelℳ would generate the same benefit as a random
model.

• The mutual information is between these two extremes. This corresponds to
realistic scenarios. The causal profit is influenced by CB(𝑥) and the scores 𝑆𝑡(𝑥),
but also by the prediction model ℳ, as discussed below.

In more general settings, where CB(𝑥) is not the same for all values of 𝑥 , it is more diffi-
cult to draw any conclusion on the distribution of 𝜋(𝑥) without any other assumption.

Probability distribution of the score
The second term in Eq. (5.22), 𝑃(ℳ(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)), represents the probability that a
given individual with features 𝑥 has a score higher than the threshold 𝜏 (𝐷tr), with re-
spect to the distribution of training sets 𝐷tr. This quantifies the stochastic nature of the
learning process: the predicted score varies depending on 𝐷tr, and thus the probability
of this score being higher than a threshold varies depending on 𝐷tr as well. To give
some intuition, let us suppose that we have two individuals with features 𝑥 = 𝑥1 and
𝑥 = 𝑥2, such that 𝜋(𝑥1) < 𝜋(𝑥2). A model aiming to rank the most profitable individuals
first should rank 𝑥2 before 𝑥1. However, in practice, we only have the sampling distri-
butions ℳ(𝑥1, 𝐷tr) and ℳ(𝑥2, 𝐷tr). These estimators can be characterized in terms
of their bias and variances (see Definitions 2.22 and 2.23). On the one hand, a higher
variance always increases the probability of misclassification, that is, the probability
that ℳ(𝑥1, 𝐷tr) > ℳ(𝑥2, 𝐷tr). On the other hand, the bias might have a detrimental
or positive effect, depending on its sign. If the bias on 𝑥2 is much larger than that on
𝑥1, then the profit estimates, although biased, will increase the probability of correct
classification. Fernández-Loria and Provost (2022a) derived an analytical criterion to
determine when a model has a higher risk of misclassification than another depending
on their biases and variances.

Interaction of the two terms
The causal profit is determined not only by the two terms in Eq. (5.22) independently,
but also by their interaction. To illustrate this, we highlight two important interactions:
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• Let ℳ1 and ℳ2 be two different models that give a high score to different sub-
populations, i.e., 𝑃(ℳ1(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) is high only for 𝑥 in a set 𝒳1 and
𝑃(ℳ2(𝑥, 𝐷tr) ≥ 𝜏(𝐷tr)) is high only for 𝑥 in a different set𝒳2. Yet, if the expected
profits 𝜋(𝑥) on 𝒳1 and 𝒳2 are similar, then the causal profit will be similar as
well.

• Suppose that we have a vector of features 𝑥 that is not very informative. In this
case, the posterior probabilities 𝑆𝑡(𝑥)will be close to the prior probability 𝑆𝑡 . This
affects the distribution of 𝜋(𝑥), so that most individuals have a causal profit 𝜋(𝑥)
close to 𝔼𝑥 [𝜋(𝑥)] (if CB(𝑥) does not vary too much across 𝑥 as well). Since 𝜋(𝑥),
which is estimated by ℳ, does not vary much between different values of 𝑥 , a
slight estimation error by ℳ can easily lead to a misclassification (i.e., ranking
in the wrong order different individuals).

These two scenarios show that the causal profit is impacted by the model estimation
error and the distribution of 𝜋(𝑥) in a non-trivial way. In the following sections, we will
assess the impact of four components of the problem: the distribution of scores 𝑆0(𝑥)
and 𝑆1(𝑥), the cost-benefit matrix CB(𝑥), the mutual information 𝐼 (𝑥; 𝑦 𝑡), and variance
of the estimatorℳ(𝑥, 𝐷tr). In terms of estimator bias, wewill focus on the bias inherent
in the uplift and predictive approaches. The uplift approach estimates 𝑈 (𝑥), which is a
potentially biased estimator of 𝜋(𝑥) (when the unitary value assumption does not hold,
see Result 5.3), and the predictive approach estimates 𝑆0(𝑥), which is definitely biased,
since the impact of 𝑆1(𝑥) is not taken into account.

5.3.2 Simulation study with normally-distributed features

In this section, we illustrate the results of the previous sections using a simple data-
generating process. Although the results of this simulation might not generalize well
to real-life situations, they nevertheless provide qualitative intuitions about the impact
of various parameters such as the mutual information on the performance of the model.
This also shows that the uplift approach is not always the best option even in very
simple settings.

First, we give the mathematical definition of the data-generating process. Let 𝑥 be
a vector of 𝑛 features 𝑥 = [𝑥1, … , 𝑥𝑛], which are all independent random variables with
a standard normal distribution 𝒩 (0, 1). The binary potential outcomes 𝑦0 and 𝑦1 are
determined using a linear combination of 𝑥 with coefficient vectors 𝜆0 and 𝜆1 ∈ ℝ𝑛
and thresholds 𝜂0, 𝜂1 ∈ ℝ. More precisely, the outcome 𝑦 𝑡 , for 𝑡 = 0, 1, is defined as
𝑦 𝑡 = 𝕀[𝜆𝑇𝑡 𝑥 + 𝜀 ≥ 𝜂𝑡 ] with 𝜀 ∼ 𝒩 (0, 1). Higher values of 𝜂𝑡 lead to a lower probability
that 𝑦 𝑡 = 1. Furthermore, higher values in 𝜆0 and 𝜆1 induce a lower impact of the noise
𝜀 on the value of 𝑦 𝑡 , hence the features 𝑥 are more informative about the outcome 𝑦
(the mutual information 𝐼 (𝑥; 𝑦 𝑡) is higher). Finally, the treatment indicator 𝑡 is sampled
from a Bernoulli distribution with parameter 𝑝 ∈ (0, 1), and the observed outcome 𝑦 is
defined accordingly as 𝑦 = 𝑦0(1 − 𝑡) + 𝑦1𝑡 .

With this data-generating process, a training dataset𝐷tr of size𝑁tr and a test dataset
𝐷te of size 𝑁te are generated. The training dataset is used to train an uplift model and
a predictive model, and their predictions on the test set are then compared in terms of
the profit measure. In this simulation setting, we have access to the exact conditional
probabilities 𝑆0(𝑥) and 𝑆1(𝑥) and to the cost-benefit matrix and, therefore, we know the
exact value of the individual profit 𝜋(𝑥). The conditional probabilities 𝑆0(𝑥) and 𝑆1(𝑥)
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can easily be retrieved from the distribution of 𝑦0 and 𝑦1 as follows:

𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥) = 𝑃(𝜆𝑇𝑡 𝑥 + 𝜀 ≥ 𝜂𝑡)
= 𝑃(𝜀 ≥ 𝜂𝑡 − 𝜆𝑇𝑡 𝑥) = 1 − Φ(𝜂𝑡 − 𝜆𝑇𝑡 𝑥)
= Φ(𝜆𝑇𝑡 𝑥 − 𝜂𝑡)

where Φ(⋅) is the cumulative distribution function of the standard normal distribution.
To obtain a quantitative measure of performance without relying on the choice of the
prescription rate 𝜌, we compute the area under the empirical profit curve:

AUPC = 1
𝑁te

𝑁te

∑
𝑘=1

Π̃(𝑘, 𝐷tr, 𝐷te).

In this simulation, we also want to assess the impact of the mutual information
𝐼 (𝑥; 𝑦0) and 𝐼 (𝑥; 𝑦1) on the performance of the uplift and predictive approaches. The
mutual information is computed as 𝐼 (𝑥; 𝑦 𝑡) = 𝐻(𝑦 𝑡) − 𝐻(𝑦 𝑡 ∣ 𝑥). These two terms are
themselves computed as

𝐻(𝑦 𝑡) = −𝑆𝑡 log 𝑆𝑡 − (1 − 𝑆𝑡) log(1 − 𝑆𝑡) (5.25)

𝐻(𝑦 𝑡 ∣ 𝑥) = −∫𝒳 𝑆𝑡(𝑥) log 𝑆𝑡(𝑥) + (1 − 𝑆𝑡(𝑥)) log(1 − 𝑆𝑡(𝑥)) d𝑥. (5.26)

The term 𝑆𝑡 = 𝑃(𝑦 𝑡 = 1) in Eq. (5.25) is computed as 𝑆𝑡 = 𝔼𝑥 [𝑆𝑡(𝑥)]. Expected values
over the distribution of 𝑥 (for computing 𝑆𝑡 or 𝐻(𝑦 𝑡 ∣ 𝑥) in Eq. 5.26) are computed by
averaging on the test data set 𝐷te.

The parameters of the experiment are set as follows. We use 𝑛 = 10 features. The
treatment rate is 𝑝 = 0.04 to induce a greater variance for the uplift approach, by
providing the estimator of 𝑆1(𝑥) with fewer samples. We have 𝑁tr = 1000 training
samples (a low number of samples to induce a high estimator variance) and 𝑁te =
10000 test samples (to reduce the variance of the empirical profit curve). The values
in the vectors 𝜆0 and 𝜆1 are chosen randomly according to, respectively, 𝒩 (1.2𝑐, 𝑐2)
and 𝒩 (𝑐, 𝑐2), where 𝑐 is a scale parameter varying from 10−2 to 10 in different runs
of the experiment. The thresholds are chosen manually to 𝜂0 = 1.12 and 𝜂1 = 0.87
to generate a distribution of potential outcomes close to 𝑆0 = 0.4 and 𝑆1 = 0.4. The
predictive approach is the logistic regression model of the Scikit-learn Python package
(Pedregosa et al., 2011) trained on the samples with 𝑡 = 0. The uplift approach is a
T-learner, implemented as the difference between two logistic regression models (also
from the Scikit-learn package) trained, respectively, on the control samples (𝑡 = 0) and
the target samples (𝑡 = 1), with a regularization parameter 𝐶 = 10. We assume a unitary
cost-benefit matrix to evaluate the empirical profit curve. The experiment is repeated
100 times, sampling new values for 𝜆0 and 𝜆1 at each iteration.

Fig. 5.3 shows the performance of the uplift and predictive approaches as a function
of the mutual information 𝐼 (𝑥; 𝑦0). Note that we report the mutual information 𝐼 (𝑥; 𝑦0)
as a ratio between zero and its maximum value𝐻(𝑦0). Due to the low number of treated
samples in the training set (𝑝 = 0.04 and 𝑁tr = 1000), the uplift approach suffers
from a higher variance than the predictive approach, the latter using only the more
numerous control samples. This leads to the predictive approach performing better in
terms of area under the profit curve (AUPC) in the low information regime. However,
as the features become more informative, the uplift approach starts to outperform the
predictive approach.

103



5. Theoretical analysis of uplift modeling

10 4 10 3 10 2 10 1 100

I(x; y0) / H(y0)

0

5

10

15

AU
PC

 (%
)

Approach
Uplift
Predictive

Figure 5.3 Performance of the uplift and predictive approach as a function of the pro-
portion of mutual information between the features 𝑥 and 𝑦0 in the simulation with
normally distributed features. The lines represent the mean AUPC of all experiments
with similar mutual information, which is determined by weighting the different exper-
iments using a Gaussian kernel moving along the horizontal axis. The bands represent
the 95% confidence interval assuming a normal distribution. While the uplift approach
performs better when all the information is available, the low information regime is
dominated by the predictive approach.

This simulated experiment shows that even in very simple settings, with normally
distributed features and linear models, the uplift approach does not always provide
the best performance. A low number of treated samples and relatively uninformative
features can lead the predictive approach to outperform the uplift approach.

5.3.3 Simulation study with a Dirichlet distribution

In the simulation of Section 5.3.2, the distribution of potential outcomes, the mutual
information 𝐼 (𝑥; 𝑦 𝑡), and the variance of the uplift and predictive models had to be
calculated after the fact, because they were influenced by the simulation parameters
in a complex way. Moreover, the choice of the distribution of the covariates 𝑥 , the
functional dependency between 𝑥 , 𝑦 and 𝑡 , and the choice of the uplift models have a
significant influence on the results of our analysis. In this section, we develop a more
complex simulation that allows more flexibility and whose characteristics are easier to
compute than the simple data generation process of Section 5.3.2. In particular, the
distribution of potential outcomes, the mutual information, and the variance of the
estimators can be specified directly and independently of each other.

The simulation of this section is based on the insight that the process of training
an uplift model and predicting the uplift of samples from a test set results in a distri-
bution of scores, and that only these scores affect the result of our analysis. The exact
distribution of 𝑥 or its dependency with 𝑦 and 𝑡 has no impact beyond the predicted
scores. Therefore, if we can generate scores according to a distribution similar to those
predicted by an uplift model, then modeling the distribution of 𝑥 in our simulation
is unnecessary. More precisely, we generate conditional probabilities 𝑆0(𝑥) and 𝑆1(𝑥)
without explicitly modeling 𝑥 . Afterward, we can emulate the scores given by the uplift
and predictive approaches ℳ𝑢(𝑥, 𝐷tr) and ℳ𝑝(𝑥, 𝐷tr) as noisy estimates of 𝑈 (𝑥) and
𝑆0(𝑥) (which are easily computed from the joint distribution of 𝑦0, 𝑦1 ∣ 𝑥). Since we
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sample the distribution 𝑦0, 𝑦1 ∣ 𝑥 and the estimated scores but we do not sample 𝑥 di-
rectly, we will denote individual samples with superscript 𝑖 rather than as functions of
𝑥 .

We use the notation for the joint distribution of the potential outcomes defined in
Section 3.2.1.

𝛼 = 𝑃(𝑦0 = 0, 𝑦1 = 0) 𝛽 = 𝑃(𝑦0 = 1, 𝑦1 = 0) (5.27)

𝛾 = 𝑃(𝑦0 = 0, 𝑦1 = 1) 𝛿 = 𝑃(𝑦0 = 1, 𝑦1 = 1). (5.28)

We also note 𝜇 = [𝛼, 𝛽, 𝛾 , 𝛿]. From this notation, one can easily show that

𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿. (5.29)

The sampling process is as follows:

1. First, we generate 𝑁 independent samples {(𝛼 (𝑖), 𝛽(𝑖), 𝛾 (𝑖), 𝛿 (𝑖))}𝑁𝑖=1 according to a
Dirichlet distribution with parameter vector 𝑚 = [𝑎, 𝑏, 𝑐, 𝑑]:

(𝛼 (𝑖), 𝛽(𝑖), 𝛾 (𝑖), 𝛿 (𝑖)) ∼ Dir(𝑎, 𝑏, 𝑐, 𝑑). (5.30)

They model the joint probabilities of the potential outcomes as in Eqs. (5.27)
to (5.28), but at the individual level for each individual 𝑖. The Dirichlet distri-
bution is a natural candidate to sample numbers in a probability simplex (i.e.,
such that 𝛼 (𝑖), 𝛽(𝑖), 𝛾 (𝑖) and 𝛿 (𝑖) are all positive and sum up to 1), since it is the
conjugate prior of the multinomial distribution (Lin, 2016). This distribution has
a number of properties that make it particularly suited to our setting, which we
demonstrate in Appendix D.

2. Then, we derive the value of the conditional probabilities 𝑆(𝑖)0 and 𝑆(𝑖)1 with the
identities 𝑆(𝑖)0 = 𝛽(𝑖) + 𝛿 (𝑖) and 𝑆(𝑖)1 = 𝛾 (𝑖) + 𝛿 (𝑖) from Eq. (5.29). This results in 𝑆(𝑖)0
and 𝑆(𝑖)1 having marginal beta distributions, which is convenient since the beta
distribution is the conjugate prior of the Bernoulli distribution, and 𝑦 (𝑖)𝑡 follows
a Bernoulli distribution Bern(𝑆(𝑖)𝑡 ). This procedure is based on the bivariate beta
distribution of Olkin and Trikalinos (2015). We note the two steps

(𝛼 (𝑖), 𝛽(𝑖), 𝛾 (𝑖), 𝛿 (𝑖)) ∼ Dir(𝑎, 𝑏, 𝑐, 𝑑) (5.31)

𝑆(𝑖)0 = 𝛽(𝑖) + 𝛿 (𝑖) (5.32)

𝑆(𝑖)1 = 𝛾 (𝑖) + 𝛿 (𝑖). (5.33)

as
(𝑆(𝑖)0 , 𝑆(𝑖)1 ) ∼ BB(𝑎, 𝑏, 𝑐, 𝑑). (5.34)

3. The score of the predictive approach is emulated as a binomial distribution with
parameters 𝑆(𝑖)0 and 𝑛𝑝 normalized to have a maximum value of 1:

ℳ(𝑖)𝑝 ∼ 1
𝑛𝑝

Bin(𝑆(𝑖)0 , 𝑛𝑝). (5.35)

This emulates the behavior of tree-based models that estimate the conditional
probability of the outcome by computing the ratio of positive outcomes among
the samples close to the input sample in the feature space. Larger values of 𝑛𝑝
induce a lower estimator variance.
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4. Similarly, the score of the uplift approach is emulated as the difference between
two normalized binomial distributions, with parameters 𝑆(𝑖)0 , 𝑛𝑢 and 𝑆(𝑖)1 , 𝑛𝑢 :

ℳ(𝑖)𝑢 ∼ 1
𝑛𝑢

Bin(𝑆(𝑖)0 , 𝑛𝑢) − 1
𝑛𝑢

Bin(𝑆(𝑖)1 , 𝑛𝑢). (5.36)

5. Finally, the binary outcomes 𝑦 (𝑖)0 , 𝑦 (𝑖)1 are sampled according to a categorical dis-
tribution of probability vector 𝜇(𝑖) = [𝛼 (𝑖), 𝛽(𝑖), 𝛾 (𝑖), 𝛿 (𝑖)]:

𝑃(𝑦 (𝑖)0 = 0, 𝑦 (𝑖)1 = 0 ∣ 𝜇(𝑖) = 𝜇(𝑖)) = 𝛼 (𝑖), (5.37)

𝑃(𝑦 (𝑖)0 = 1, 𝑦 (𝑖)1 = 0 ∣ 𝜇(𝑖) = 𝜇(𝑖)) = 𝛽(𝑖), (5.38)

𝑃(𝑦 (𝑖)0 = 0, 𝑦 (𝑖)1 = 1 ∣ 𝜇(𝑖) = 𝜇(𝑖)) = 𝛾 (𝑖), (5.39)

𝑃(𝑦 (𝑖)0 = 1, 𝑦 (𝑖)1 = 1 ∣ 𝜇(𝑖) = 𝜇(𝑖)) = 𝛿 (𝑖). (5.40)

This sampling process is particularly convenient because most of its parameters are
directly related to the quantities we are interested in:

• The parameters 𝑎, 𝑏, 𝑐, 𝑑 are proportional to the probabilities of the distribution
of the potential outcomes, 𝛼, 𝛽, 𝛾 , 𝛿 (see Eqs. (5.27) to (5.28)). For example, using
the moments of the Dirichlet distribution described in Section 2.1.5, we have

𝛽 = 𝑃(𝑦 (𝑖)0 = 1, 𝑦 (𝑖)1 = 0) = ∫𝒮 𝑃(𝑦 (𝑖)0 = 1, 𝑦 (𝑖)1 = 0 ∣ 𝜇(𝑖) = 𝜇(𝑖))𝑓𝜇(𝑖)(𝜇(𝑖)) d𝜇(𝑖)

= ∫𝒮 𝛽(𝑖)𝑓𝜇(𝑖)(𝜇(𝑖)) d𝜇(𝑖) = 𝔼[𝛽(𝑖)] = 𝑏
𝑀

where 𝑀 = 𝑎 + 𝑏 + 𝑐 + 𝑑 , 𝒮 is the unit 4-simplex, and 𝑓𝜇(𝑖)(⋅) is the probability

density function of 𝜇(𝑖).

• The mutual information 𝐻(𝑦 (𝑖)0 , 𝑦 (𝑖)1 ; 𝜇(𝑖)) decreases as the sum of the parameters
𝑀 = 𝑎 + 𝑏 + 𝑐 + 𝑑 increases, as shown in Fig. 5.4. The analytical relationship
between 𝑀 and the mutual information is given in Appendix D. This mutual
information is equivalent in our simulation setting to the mutual information
between the features and the outcomes 𝐻(𝑦0, 𝑦1 ∣ 𝑥) discussed in Section 5.3.1,
which has an important impact on the measure of profit.

• The variance of the estimatorsℳ𝑢 andℳ𝑝 can be easily adjusted independently
of all other parameters by choosing the appropriate value of 𝑛𝑢 and 𝑛𝑝 . In fact,
we have

Var(ℳ(𝑖)𝑢 ) = 1
𝑛𝑢

(𝑆(𝑖)0 (1 − 𝑆(𝑖)0 ) + 𝑆(𝑖)1 (1 − 𝑆(𝑖)1 )) , (5.41)

Var(ℳ(𝑖)𝑝 ) = 1
𝑛𝑝

(𝑆(𝑖)0 (1 − 𝑆(𝑖)0 )) . (5.42)

Note that in practice, the variance of the uplift and predictive approaches might
be similar since both are typically trained on the same dataset.
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Figure 5.4 Mutual information as a function of𝑀 = 𝑎+𝑏+𝑐+𝑑 , for a fixed distribution
of potential outcomes [𝛼, 𝛽, 𝛾 , 𝛿] = [0.4, 0.3, 0.2, 0.1].
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Figure 5.5 Best approach as a function of the estimator variance for different levels of
information between the features and the outcome. Here, 𝛼 = 0.6, 𝛽 = 0.2, 𝛾 = 0.1 and
𝛿 = 0.1, and we use the unitary cost-benefit matrix.

The sampling process is repeated for different values of the parameters 𝑛𝑢 and 𝑛𝑝
(ranging both independently from 1 to 50), which influence the variance of the uplift
and predictive approaches. Figures 5.5 to 5.7 show which of the uplift and predictive
approaches performs the best for each value of 𝑛𝑢 and 𝑛𝑝 , and for different values of
other parameters.

Figure 5.5 varies the mutual information between the features and the outcome. In
the first panel, where no information is available, both approaches perform similarly,
since they are equivalent to random selection. However, we see in the remaining panels
that a lower mutual information increases the proportion of cases where the predictive
approach performs better.

Figure 5.6 varies the cost-benefit matrix used to compute the profit measure. The
third panel represents the unitary value assumption. The remaining panels highlight
various scenarios that favor either the predictive approach or the uplift approach, em-
phasizing the significant effect of the cost-benefit matrix on their relative performance.
We hypothesize that the large difference between, for example, the first and second
panels is due to the cost of treatment, that is, the difference between CB00 and CB10. It
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Figure 5.6 Best approach as a function of the estimator variance for different values of
CB(𝑥). Here, we have 1% of mutual information between the features and the outcomes.
The probabilities of potential outcomes are 𝛼 = 0.6, 𝛽 = 0.2, 𝛾 = 0.1 and 𝛿 = 0.1.
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Figure 5.7 Best approach as a function of the estimator variance for different values
of 𝜇. Here, we have 1% of mutual information between the features and the outcomes.
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Figure 5.8 Ratio of runs where the uplift approach is better, where each dot represents
several experiments with different estimator variances but a fixed distribution of poten-
tial outcomes. The dots are arranged on the space of values of 𝑆0 and 𝑆1 (recall from
Eq. (5.29) that 𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿). Jitter is added to help distinguish overlapping
dots.

is equal to 60 in the first panel and 21 in the second.
Figure 5.7 varies the joint distribution of the potential outcomes between the differ-

ent panels. We can observe that it has an important impact on the performance of the
uplift and predictive approaches. In the first panel, where 𝛾 = 0.49 and 𝛿 = 0.49, which
indicates a negative causal effect and a high probability 𝑆1, the predictive approach per-
forms better than the uplift approach when its variance is lower. On the other hand in
the fifth panel, where 𝛽 = 0.49 and 𝛿 = 0.49, the situation is the opposite: the causal
effect is high, hence large benefits can be generated by selecting individuals with the
uplift approach in almost every case. The other panels indicate intermediate situations
between these two extremes.

To have a more comprehensive understanding of the impact of the distribution of
potential outcomes, we repeat the experiment for different values of 𝜇 chosen uniformly.
Then, for each value of 𝜇, we repeat the experiment by varying the variance of both
approaches. Figure 5.8 depicts the ratio of cases where the uplift approach outperforms
the predictive approach for each value of 𝜇. The data points are organized according
to 𝑆0 and 𝑆1 (recall that 𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿 from Eq. 5.29). We observe that,
for a given marginal distribution of potential outcomes (characterized by 𝑆0 and 𝑆1),
the joint distribution of potential outcomes (characterized by 𝜇) has a relatively minor
impact. In particular, when 𝑆1 is close to zero or one while 𝑆0 is not, the uplift approach
consistently outperforms the predictive approach. On the contrary, when 𝑆0 is close
to zero or one while 𝑆1 is not, the predictive approach becomes the favorable choice in
approximately 50% of the cases.

5.4 Discussion and limitations

The results presented in this study shed light on the performance of the uplift and pre-
dictive approaches under various parameter settings. Our findings illustrate the crucial
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role of factors such as estimator variance, mutual information, cost-benefit matrix, and
the distribution of potential outcomes in determining the performance dynamics be-
tween these approaches.

One of the key findings of this study is the crucial role that the variance of the uplift
and predictive approaches plays in determining their relative performance. The results
consistently show that, in almost all settings, one approach will outperform the other
if its variance is significantly lower. This highlights the importance of carefully consid-
ering the higher variance of the uplift approach compared to the predictive approach.

We summarize our findings as follows. The uplift approach should be preferred
when

• The outcome is easy to predict from the features, that is, there is a high mutual
information between the outcome and the features (see Fig. 5.5);

• The probability of the outcome in the control group (𝑆0) is close to zero or one,
while the probability of the outcome in the target group (𝑆1) is not (see Fig. 5.8);

• The uplift approach has a lower or the same variance as the predictive approach
(see Figs. 5.5 to 5.7).

On the other hand, the predictive approach is more effective when its variance is low
enough with respect to the uplift approach and one of the following conditions is sat-
isfied:

• When the mutual information is low (see Fig. 5.5);

• The probability of the outcome in the target group (𝑆1) is close to zero or one,
while the probability of the outcome in the control group (𝑆0) is not (see Fig. 5.8);

• The treatment has a significant cost (see Fig. 5.6).

The condition of 𝑆0 being close to zero or one was already noted in articles comparing
the uplift and predictive approaches (Fernández-Loria and Provost, 2022a,b), but this
simulation provides a more systematic illustration. In particular, we observe a sym-
metric condition where the uplift approach is better when the roles of 𝑆0 and 𝑆1 are
swapped (see Fig. 5.8).

Our analysis is limited by several factors. First, we assumed that the cost-benefit
matrix does not vary between individuals, which could have an important impact on
our results. Second, the uplift and predictive approaches have no bias with respect to
the quantity they aim to estimate. Machine learning estimators might be biased, which
could further impact their performance. Finally, the choice of modeling the joint dis-
tribution of the potential outcomes from a Dirichlet distribution, as well as simulating
the estimators from binomial distributions, is obviously a limiting factor. We consider
this limitation to be not critical because the space of distributions that can be simulated
this way is large enough to represent real-world distributions.

5.5 Conclusion

In this chapter, we investigated the effectiveness of uplift modeling compared to the
classical predictive approach. To perform this comparison from a sound theoretical

110



5.5. Conclusion

basis, we proposed a new formulation of the measure of profit. It emphasizes indi-
vidual cost sensitivity and the stochastic nature of the underlying machine learning
model. We showed the equivalence of the measure of profit to a preexisting defini-
tion in the literature, and the convergence of the uplift curve to the measure of profit.
We highlighted the strict conditions necessary for the validity of the uplift curve for
performance evaluation.

The variance of the estimator plays a crucial role in the performance of the uplift
and predictive approaches: in almost every case, the predictive approach is preferred
if the variance of the uplift approach is high enough. This result is critical because the
uplift approach typically exhibits higher variance than the predictive approach. The
higher variance arises from the fact that the uplift approach estimates the difference
between two probabilities, introducing additional uncertainty into the estimation pro-
cess. We also showed that the mutual information between input features and the
outcome, as well as the distribution of the potential outcomes, plays an important role
in determining when the predictive approach outperforms uplift modeling. Lastly, a
proper definition of the cost-benefit matrix is essential, as the performance of both
approaches can vary widely depending on it.

Overall, this chapter provides firm theoretical foundations for uplift modeling and
answers the question of when uplift modeling outperforms predictive modeling. Our
findings have important implications for practitioners in various domains, such as mar-
keting, telecommunications, healthcare, and finance, who rely on machine learning
techniques for decision-making. In particular, we suggest practitioners to carefully
estimate the various parameters highlighted above to evaluate whether the uplift ap-
proach is likely to bring benefits.
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6
Counterfactual identification

Some of the results presented in this chapter have been published or are expected to be
published in the following articles:

• Théo Verhelst, Denis Mercier, et al. (Mar. 2023b). “Partial counterfactual identi-
fication and uplift modeling: theoretical results and real-world assessment”. en.
In: Machine Learning. issn: 0885-6125, 1573-0565. doi: 10.1007/s10994-023-063
17-w. url: https://link.springer.com/10.1007/s10994-023-06317-w (visited on
05/03/2023)

• Théo Verhelst and Gianluca Bontempi (2024). “Identifying counterfactual proba-
bilities using bivariate distributions and uplift modeling”. In: to be submitted

• Théo Verhelst, Mercier Denis, et al. (2024). “Customer segmentation from coun-
terfactual probabilities: new insights for the telecom sector”. In: to be submitted

Counterfactual statements (or counterfactuals for short) concern the potential of events
in situations different from the actual state of the world, such as “Would this customer
have stayed if we did not call them?”. We introduced the concept of counterfactuals and
its place in Pearl’s causal hierarchy in Section 2.2.1. In the setting of customer churn, we
are particularly interested in classifying customers into four categories, as presented
in Sections 3.1.1 and 3.2.1: persuadable, sure thing, lost cause and do-not-disturb cus-
tomers. The probability of counterfactual statements cannot be estimated purely from
data without any assumption; however, it is possible to bound these probabilities. This
task is called partial counterfactual identification, which was first addressed by Tian and
Pearl (2000) and more recently by Mueller, A. Li, and Pearl (2021) and J. Zhang, Tian,
and Bareinboim (2022). We describe these works in Section 3.2.3.

These existing works on partial counterfactual identification make structural as-
sumptions on the causal model to derive boundswhose estimate requires a combination
of experimental and observational data. In this chapter, we propose original bounds
and point estimators on the probability of counterfactuals based on the uplift terms.
The originality of our approach stems from the fact that they depend on terms (like
uplift) for which a wide range of estimators already exist in the literature. This is of
particular interest in big data applications, where structural assumptions are hard to
validate, but a large number of observations about individual descriptors (covariates)
and past behavior are available.
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6. Counterfactual identification

The main contributions of this chapter are as follows:

• A set of original bounds on the probability of counterfactuals, expressed in terms
of uplift terms (Section 6.2).

• A point estimator of the counterfactual probabilities based on the conditional
independence assumption (Section 6.3).

• A Bayesian posterior distribution on the counterfactual probabilities based on
a bivariate beta distribution, and three variations of this approach that make
less restrictive assumptions at the cost of higher computational complexity (Sec-
tion 6.4).1

• An assessment with two different simulations of the proposed counterfactual es-
timators (Section 6.5).1

• An assessment of the proposed counterfactual estimators with a dataset of cus-
tomer churn campaigns from Orange Belgium and a discussion of the potential
benefits suggested by the results (Section 6.6).

• A characterization of the different types of customer using our counterfactual
estimators and other customer descriptive features, giving new insights on the
reaction of customers to retention efforts (Section 6.6.3).1

The rest of this chapter is organized as follows. In Section 6.1, we give a formal
description of the problem addressed in this chapter. In Sections 6.2 and 6.3, we derive
bounds and point estimates on the probability of counterfactuals. We describe the esti-
mators based on a bivariate beta distribution in Section 6.4. We analyze the behavior of
these estimators under various conditions with simulated examples in Section 6.5. We
apply our estimator to a real-world dataset from Orange Belgium and perform various
analyses from the estimated distribution of counterfactuals in Section 6.6. We discuss
our results in Section 6.7 and give our conclusions in Section 6.8.

6.1 Problem setting

The mathematical notation used throughout this chapter is defined in Sections 3.1.1
and 3.2.1, which we briefly summarize. The random variable 𝑦 denotes the binary
outcome of interest, 𝑡 represents the binary treatment, and 𝑥 is a random vector of
descriptive features. The domains of these variables are, respectively, 𝒴 = {0, 1}, 𝒯 =
{0, 1}, and𝒳 ⊆ ℝ𝑛. The feature vector 𝑥 is continuous and characterized by a probability
density function 𝑓𝑥 .

Suppose that we observe 𝑦 = 1 after having assigned the treatment 𝑡 = 0 to a given
individual, leading to the realization of the potential outcome 𝑦0 = 1. Although we
do not know the value of the counterfactual outcome 𝑦1, we can reason about it. If
𝑦1 = 0, the treatment would have a causal impact on the outcome, since the outcome
𝑦 changes by intervening on 𝑡 . Otherwise, if 𝑦1 = 1, the treatment would not have a
causal influence on the outcome of this individual. More generally, the joint values of 𝑦0
and 𝑦1 define four different counterfactual expressions, summarized in Table 6.1. Our

1These contributions are part of two unpublished articles mentioned at the beginning of this chapter,
which we intend to submit for publication early 2024.
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Table 6.1 The four categories of customers for churn prevention in terms of counter-
factual outcomes.

𝑦0 = 0 𝑦0 = 1
𝑦1 = 0 Sure thing Persuadable
𝑦1 = 1 Do-not-disturb Lost cause

objective in this chapter is the estimation of the probability of these four counterfactual
expressions, noted

𝛼 = 𝑃(𝑦0 = 0, 𝑦1 = 0) = 𝑃(sure thing) (6.1)

𝛽 = 𝑃(𝑦0 = 1, 𝑦1 = 0) = 𝑃(persuadable) (6.2)

𝛾 = 𝑃(𝑦0 = 0, 𝑦1 = 1) = 𝑃(do-not-disturb) (6.3)

𝛿 = 𝑃(𝑦0 = 1, 𝑦1 = 1) = 𝑃(lost cause). (6.4)

From which we can derive

𝑆0 = 𝑃(𝑦0 = 1) = 𝑃(𝑦0 = 1, 𝑦1 = 0) + 𝑃(𝑦0 = 1, 𝑦1 = 1) = 𝛽 + 𝛿 (6.5)

𝑆1 = 𝑃(𝑦1 = 1) = 𝑃(𝑦0 = 0, 𝑦1 = 1) + 𝑃(𝑦0 = 1, 𝑦1 = 1) = 𝛾 + 𝛿. (6.6)

The probabilities in Eqs. (6.1) to (6.4) represent the probability of any individual,
picked at random in the population, to correspond to one of the four categories. We
name these probabilities population-level counterfactuals. Given the size of the pop-
ulation, this also indicates the expected number of individuals in each category. In
practice, we are also interested in estimating the probability that a specific individual
belongs to each category. This individual is described by the realization of the random
vector 𝑥 = 𝑥 , and the corresponding counterfactual probabilities are noted

𝛼(𝑥) = 𝑃(𝑦0 = 0, 𝑦1 = 0 ∣ 𝑥 = 𝑥) = 𝑃(surething ∣ 𝑥 = 𝑥) (6.7)

𝛽(𝑥) = 𝑃(𝑦0 = 1, 𝑦1 = 0 ∣ 𝑥 = 𝑥) = 𝑃(persuadable ∣ 𝑥 = 𝑥) (6.8)

𝛾 (𝑥) = 𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝑥 = 𝑥) = 𝑃(do − not − disturb ∣ 𝑥 = 𝑥) (6.9)

𝛿(𝑥) = 𝑃(𝑦0 = 1, 𝑦1 = 1 ∣ 𝑥 = 𝑥) = 𝑃(lostcause ∣ 𝑥 = 𝑥). (6.10)

These probabilities are called individual-level counterfactuals.
Contrary to most of the literature on counterfactual identification presented in Sec-

tions 3.2.2 and 3.2.3, we do not make any assumption on the causal graph 𝐺 of the
underlying causal model. Instead, we only assume to have access to estimators of the
probabilities 𝑆𝑡 = 𝑃(𝑦 𝑡 = 1) and 𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥) for 𝑡 = 0, 1. The probability

𝑆𝑡 can easily be estimated from a dataset 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 of 𝑁 iid realizations
of (𝑥, 𝑦 , 𝑡) under the assumption of unconfoundedness, defined in Definition 3.2. Un-
confoundedness implies that the conditional and the interventional distributions are
identical, that is,

𝑆𝑡 = 𝑃(𝑦 𝑡 = 1) = 𝑃(𝑦 = 1 ∣ 𝑡 = 𝑡), (6.11)

and thus we can use the maximum likelihood estimator

𝑆𝑡 ≈
∑𝑁

𝑖=1 𝕀[𝑦 (𝑖) = 1 and 𝑡(𝑖) = 𝑡]
∑𝑁

𝑖=1 𝕀[𝑡(𝑖) = 𝑡]
. (6.12)
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Similarly, under unconfoundedness, the interventional probability 𝑆𝑡(𝑥) is equal to the
observational probability,

𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥) = 𝑃(𝑦 = 1 ∣ 𝑡 = 𝑡, 𝑥 = 𝑥), (6.13)

and an uplift model can be used to estimate 𝑃(𝑦 = 1 ∣ 𝑡 = 𝑡, 𝑥 = 𝑥) for any 𝑡 and
𝑥 . Randomization of treatment guarantees unconfoundedness, but, in the absence of
randomized data, an adjustment set (i.e., satisfying the back-door criterion as described
by Pearl (2009, Def. 3.3.1)) and a suitable learning algorithm can enable an unbiased
estimation of 𝑆0(𝑥) and 𝑆1(𝑥). This is possible, for example, using the X-learner strategy
(see Section 3.1.2) with propensity scores (Künzel et al., 2019) and, more recently, with
double machine learning estimators (Jung, Tian, and Bareinboim, 2021).

6.2 Bounds on the probability of counterfactuals

As presented in Section 3.2.3, bounds on the probability of counterfactuals have first
been derived in Tian and Pearl (2000), where the authors focus on 𝑃(𝑦0 = 0 ∣ 𝑡 = 1, 𝑦 =
1), 𝑃(𝑦1 = 1 ∣ 𝑡 = 0, 𝑦 = 0), and 𝑃(𝑦0 = 0, 𝑦1 = 1) (the latter is denoted 𝛾 in Eq. 6.3)
under various assumptions. These bounds derive from the classical Fréchet bounds
(Fréchet, 1935) stating that for any pair of events 𝐴 and 𝐵,

max{0, 𝑃(𝐴) + 𝑃(𝐵) − 1} ≤ 𝑃(𝐴, 𝐵) ≤ min{𝑃(𝐴), 𝑃(𝐵)}. (6.14)

For instance, by replacing 𝐴 with 𝑦0 = 0 and 𝐵 with 𝑦1 = 1, it is easy to derive the
bounds in Eq. (3.35) of Section 3.2.3. Tighter bounds on counterfactual probabilities are
derived in (Mueller, A. Li, and Pearl, 2021; J. Zhang, Tian, and Bareinboim, 2022) by
making structural assumptions on the causal directed acyclic graph (DAG).

In this chapter, we focus on a setting where (i) no structural assumptions may be
made (besides unconfoundedness) and (ii) an estimation of the uplift is possible on the
basis of historical data. For this reason, we derive a set of original bounds that depend
on the conditional probabilities terms 𝑆0(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥) and 𝑆1(𝑥) = 𝑃(𝑦1 = 1 ∣
𝑥 = 𝑥).

Our derivation consists in first generalizing the bounds on 𝛾 by Tian and Pearl
(2000) to all four counterfactual probabilities, by substituting 𝐴 with 𝑦0 = 0 or 𝑦0 = 1,
and 𝐵 with 𝑦1 = 0 or 𝑦1 = 1 in Eq. (6.14):

max{0, 𝑃(𝑦0 = 0) − 𝑃(𝑦1 = 1)} ≤ 𝛼 ≤ min{𝑃(𝑦0 = 0), 𝑃(𝑦1 = 0)} (6.15)

max{0, 𝑃(𝑦0 = 1) − 𝑃(𝑦1 = 1)} ≤ 𝛽 ≤ min{𝑃(𝑦0 = 1), 𝑃(𝑦1 = 0)} (6.16)

max{0, 𝑃(𝑦1 = 1) − 𝑃(𝑦0 = 1)} ≤ 𝛾 ≤ min{𝑃(𝑦0 = 0), 𝑃(𝑦1 = 1)} (6.17)

max{0, 𝑃(𝑦0 = 1) − 𝑃(𝑦1 = 0)} ≤ 𝛿 ≤ min{𝑃(𝑦0 = 1), 𝑃(𝑦1 = 1)}. (6.18)

Then, we use the conditional scores 𝑆0(𝑥) and 𝑆1(𝑥) to refine the bounds on 𝛼, … , 𝛿 by
leveraging Jensen’s inequality (Durrett, 2019, Thm. 1.5.1). Jensen’s inequality, in its
probabilistic form, states that for a convex function 𝑓 and a scalar random variable 𝑣 ,
we have

𝑓 (𝔼[𝑣]) ≤ 𝔼[𝑓 (𝑣)]. (6.19)
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We detail here the derivation of our new lower bound on 𝛽 , but the same reasoning can
easily be extended to the other bounds as well.

max{0, 𝑃(𝑦0 = 1) − 𝑃(𝑦1 = 1)} = max{0, 𝑆0 − 𝑆1} (6.20)

= max{0, 𝔼[𝑆0(𝑥) − 𝑆1(𝑥)]} (6.21)

≤ 𝔼[max{0, 𝑆0(𝑥) − 𝑆1(𝑥)}] (6.22)

≤ 𝔼[𝛽(𝑥)] = 𝛽. (6.23)

The quantity in Eq. (6.21) is the Fréchet bound on 𝛽 , which by Jensen’s inequality is
lower than Eq. (6.22). Applying Fréchet’s lower bound again, this time inside the ex-
pected value operator, we find that the quantity in Eq. (6.22) is between 𝛽 and its con-
ventional Fréchet bound. Therefore, we derived a tighter lower bound than the Fréchet
lower bound. By applying the same reasoning on all Fréchet bounds in Eqs. (6.15)
to (6.18), we propose to bound 𝛼, … , 𝛿 as follows:

𝔼[max{0, 1 − 𝑆0(𝑥) − 𝑆1(𝑥)}] ≤ 𝛼 ≤ 𝔼[min{1 − 𝑆0(𝑥), 1 − 𝑆1(𝑥)}] (6.24)

𝔼[max{0, 𝑆0(𝑥) − 𝑆1(𝑥)}] ≤ 𝛽 ≤ 𝔼[min{𝑆0(𝑥), 1 − 𝑆1(𝑥)}] (6.25)

𝔼[max{0, 𝑆1(𝑥) − 𝑆0(𝑥)}] ≤ 𝛾 ≤ 𝔼[min{1 − 𝑆0(𝑥), 𝑆1(𝑥)}] (6.26)

𝔼[max{0, 𝑆0(𝑥) + 𝑆1(𝑥) − 1}] ≤ 𝛿 ≤ 𝔼[min{𝑆0(𝑥), 𝑆1(𝑥)}]. (6.27)

Hereafter we will refer to those bounds as the uplift bounds (UB) since they are defined
in terms of the uplift terms.

6.2.1 Bounds span

To assess whether these bounds improve upon the state-of-the-art Fréchet bounds,
we consider their respective spans (i.e., the difference between the upper and lower
bounds). It can be shown that the span of uplift bounds, noted SpanUB, is the same for
all four counterfactual probabilities. Here, we base our derivation on Eq. (6.25).

SpanUB = 𝔼[min{𝑆0(𝑥), 1 − 𝑆1(𝑥)}] − 𝔼[max{0, 𝑆0(𝑥) − 𝑆1(𝑥)}] (6.28)

= 𝔼[min{𝑆0(𝑥), 1 − 𝑆1(𝑥)} − max{0, 𝑆0(𝑥) − 𝑆1(𝑥)}] (6.29)

= 𝔼[min{𝑆0(𝑥), 1 − 𝑆1(𝑥)} + min{0, 𝑆1(𝑥) − 𝑆0(𝑥)}] (6.30)

= 𝔼[min{𝑆0(𝑥), 𝑆1(𝑥), 1 − 𝑆0(𝑥), 1 − 𝑆1(𝑥)}] (6.31)

where in Eq. (6.30) we used the equality −max{𝑎, 𝑏} = min{−𝑎, −𝑏}, and in Eq. (6.31)
the equality min{𝑎, 𝑏} +min{𝑐, 𝑑} = min{𝑎 + 𝑐, 𝑎 + 𝑑, 𝑏 + 𝑐, 𝑏 + 𝑑}. Compare this with the
span of the Fréchet bounds, denoted by SpanFr, which is

SpanFr = min{𝑆0, 𝑆1, 1 − 𝑆0, 1 − 𝑆1}
for all four counterfactual probabilities. Note that SpanFr depends only on the marginal
terms 𝑆0 and 𝑆1 (i.e., the average probability of the outcome in the control and target
groups), while SpanUB is a function of the descriptive features 𝑥 . This means that in
the case of informative features (that is, when the conditional entropy of 𝑦0 and 𝑦1
given 𝑥 is smaller than the marginal entropy), the uplift bounds are tighter than the
Fréchet bounds. In the case of perfect knowledge (i.e., when 𝑦0 and 𝑦1 are determin-
istic functions of 𝑥), 𝑆0(𝑥) and 𝑆1(𝑥) are either 0 or 1, the span of the uplift bounds
collapses to zero, and the counterfactual distribution is fully determined. In the case
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of non-informative features (i.e., when the conditional entropy of 𝑦0 and 𝑦1 given 𝑥 is
equal to the marginal entropy) the uplift bounds reduce to the Fréchet bounds. These
considerations are formalized in the following theorem.

Theorem6.1. When the conditional entropy𝐻(𝑦0, 𝑦1 ∣ 𝑥) is zero, the uplift bounds on the
probability 𝑃(𝑦0 = 𝑦0, 𝑦1 = 𝑦1) collapse to the exact value of that probability. Conversely,
when the conditional entropy 𝐻(𝑦0, 𝑦1 ∣ 𝑥) is equal to the entropy 𝐻(𝑦0, 𝑦1), the uplift
bounds reduce to the Fréchet bounds.

Proof. First, let us prove that the span of the uplift bounds is zero when 𝐻(𝑦0, 𝑦1 ∣ 𝑥) =
0. From Definition 2.7, we have

𝐻(𝑦0, 𝑦1 ∣ 𝑥) = −∫𝒳 ∑
(𝑦0,𝑦1)∈𝒴 2

𝑃(𝑦0, 𝑦1 ∣ 𝑥) log 𝑃(𝑦0, 𝑦1 ∣ 𝑥)𝑓𝑥 (𝑥) d𝑥

𝐻(𝑦0, 𝑦1 ∣ 𝑥) = −∫𝒳 (𝛼(𝑥) log(𝛼(𝑥)) + 𝛽(𝑥) log(𝛽(𝑥))
+ 𝛾(𝑥) log(𝛾 (𝑥)) + 𝛿(𝑥) log(𝛿(𝑥)))𝑓𝑥 (𝑥) d𝑥.

It is minimized (in fact, equal to zero) when one of 𝛼(𝑥), … , 𝛿(𝑥) is equal to one and the
three other ones are equal to zero for all 𝑥 ∈ 𝒳 . Also, the span of the uplift bounds is

SpanUB = 𝔼[min{𝑆0(𝑥), 𝑆1(𝑥), 1 − 𝑆0(𝑥), 1 − 𝑆1(𝑥)}]
= ∫𝒳 min{𝛽(𝑥) + 𝛿(𝑥), 𝛾 (𝑥) + 𝛿(𝑥), 𝛼(𝑥) + 𝛾(𝑥), 𝛼(𝑥) + 𝛽(𝑥)}𝑓𝑥 (𝑥) d𝑥.

When one of 𝛼(𝑥), … , 𝛿(𝑥) is equal to one and the three other values are equal to zero
for all 𝑥 ∈ 𝒳 , this expression collapses to zero, since two of the four terms in the
minimum will be equal to zero. In this case, the bounds collapse to the true value of
the counterfactual probability. This proves the first part of the theorem.

For the second part of the theorem, assume that 𝐻(𝑦0, 𝑦1 ∣ 𝑥) = 𝐻(𝑦0, 𝑦1). In
terms of statistical independence, this is expressed as (𝑦0, 𝑦1) ⟂ 𝑥 . By the definition of
statistical independence, we know that 𝑃(𝑦0 ∣ 𝑥) = 𝑃(𝑦0) and 𝑃(𝑦1 ∣ 𝑥) = 𝑃(𝑦1) for all
values 𝑦0, 𝑦1 ∈ 𝒴 and 𝑥 ∈ 𝒳 . Therefore, the uplift bounds on 𝑃(𝑦0, 𝑦1) simplify to

𝔼𝑥 [max{0, 𝑃(𝑦0) + 𝑃(𝑦1) − 1}] ≤ 𝑃(𝑦0, 𝑦1) ≤ 𝔼𝑥 [min{𝑃(𝑦0), 𝑃(𝑦1)}].

The expected value is on the distribution of 𝑥 , but since the terms in the expected value
do not depend on 𝑥 , the bounds reduce to

max{0, 𝑃(𝑦0) + 𝑃(𝑦1) − 1} ≤ 𝑃(𝑦0, 𝑦1) ≤ min{𝑃(𝑦0), 𝑃(𝑦1)},

which are the Fréchet bounds.

6.2.2 Plug-in estimator

The main motivation underlying the derivation of the uplift bounds is that in real-
world settings characterized by large historical datasets (such as churn modeling), it
is possible to derive sample-based estimates of the terms that bound counterfactual
probabilities. In particular, we advocate the adoption of a plug-in estimator from an
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uplift model ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr) trained on a dataset 𝐷tr, evaluated on a test dataset
𝐷te = {𝑥(1), … , 𝑥(𝑁 )}. In this case, a sample-based version of the lower bound on 𝛽 is

L̂B𝛽 = 1
𝑁

𝑁
∑
𝑖=1

max {0, ̂𝑆0(𝑥(𝑖), 𝐷tr) − ̂𝑆1(𝑥(𝑖), 𝐷tr)} (6.32)

And similarly for the other bounds on 𝛼, … , 𝛿 , noted L̂B𝛼 , ÛB𝛼 , etc.

6.3 Point estimate of counterfactual probabilities

In the previous section, we proposed an original approach to bound counterfactual
probabilities. However, it is sometimes desirable to compute a point estimate of those
probabilities, even if this requires stronger assumptions. Here, we present a point es-
timator of the probabilities 𝛼, … , 𝛿 based on the conditional independence between 𝑦0
and 𝑦1 given 𝑥 . The introduction of specific assumptions is required since counterfac-
tual probabilities cannot be estimated from observational or experimental data, as one
of the two outcomes will necessarily be unobserved. This can be understood as a fun-
damental limitation postulated by the causal hierarchy, as presented in Section 2.2.1:
counterfactual probabilities belong to the third layer, while information that can be
learned directly from data, be it observational or experimental, belongs to the first or
second layer. To bridge the gap to the third layer, we must exploit knowledge or as-
sumptions pertaining to the third layer. Let us assume the conditional independence
between 𝑦0 and 𝑦1 given 𝑥 = 𝑥 . We discuss the meaning and validity of this assump-
tion below. Formally, this assumption is expressed as 𝑦0 ⟂ 𝑦1 ∣ 𝑥 = 𝑥 , and allows us to
develop the probability 𝛼(𝑥) in Eq. (6.7) as

𝛼(𝑥) = 𝑃(𝑦0 = 0 ∣ 𝑥 = 𝑥)𝑃(𝑦1 = 0 ∣ 𝑥 = 𝑥). (6.33)

Since we assume to have access to estimators of the scores 𝑆𝑡(𝑥) = 𝑃(𝑦 𝑡 = 1 ∣ 𝑥 =
𝑥), estimating 𝛼(𝑥) or any of the other counterfactuals is easy under this assumption
of conditional independence. To assess the impact of this assumption, we define the
difference between 𝑃(𝑦0 = 0, 𝑦1 = 0 ∣ 𝑥 = 𝑥) and its approximation 𝑃(𝑦0 = 0 ∣ 𝑥 =
𝑥)𝑃(𝑦1 = 0 ∣ 𝑥 = 𝑥) as 𝜙(𝑥). The same quantity appears in the other conditional
probabilities as follows:

𝛼(𝑥) = 𝑃(𝑦0 = 0 ∣ 𝑥 = 𝑥)𝑃(𝑦1 = 0 ∣ 𝑥 = 𝑥) + 𝜙(𝑥) (6.34)

𝛽(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥)𝑃(𝑦1 = 0 ∣ 𝑥 = 𝑥) − 𝜙(𝑥) (6.35)

𝛾 (𝑥) = 𝑃(𝑦0 = 0 ∣ 𝑥 = 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥) − 𝜙(𝑥) (6.36)

𝛿(𝑥) = 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥)𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥) + 𝜙(𝑥). (6.37)

The quantity 𝜙(𝑥) can be interpreted as a measure of the dependency between 𝑦0 and
𝑦1 given 𝑥 = 𝑥 : when 𝜙(𝑥) is equal to zero, then 𝑦0 and 𝑦1 are independent (given
𝑥 = 𝑥), when it is positive, the two potential outcomes are positively correlated, and
when it is negative, they are negatively correlated. In that sense, it is similar to classical
binary dependency measures, like the odd ratio, Yule’s 𝑄 coefficient, or the difference
coefficient (Edwards, 1957). The assumption of conditional independence 𝑦0 ⟂ 𝑦1 ∣ 𝑥 =
𝑥 is thus equivalent to assuming that 𝜙(𝑥) = 0.
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Now that we have formulated an assumption to estimate 𝛼(𝑥), … , 𝛿(𝑥) from data,
we now move on to estimate the probabilities 𝛼, … , 𝛿 . We develop 𝛼 to obtain

𝛼 = 𝑃(𝑦0 = 0, 𝑦1 = 1) (6.38)

= ∫𝒳 𝑓𝑥 (𝑥)𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝑥) d𝑥 (6.39)

= 𝔼[𝛼(𝑥)] (6.40)

= 𝔼[𝑃(𝑦0 = 0 ∣ 𝑥)𝑃(𝑦1 = 0 ∣ 𝑥) + 𝜙(𝑥)] (6.41)

= 𝔼[(1 − 𝑆0(𝑥))(1 − 𝑆1(𝑥))] + 𝜙 (6.42)

where we use the notation 𝜙 = 𝔼[𝜙(𝑥)]. We will see in Theorem 6.2 that

𝜙 = 𝛼𝛿 − 𝛽𝛾 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥)). (6.43)

This means that 𝜙 depends both on the distribution of counterfactuals (𝛼, 𝛽, 𝛾 and 𝛿)
and the dependency between the scores 𝑆0(𝑥) and 𝑆1(𝑥). If we assume 𝜙 = 0, or even
𝑦0 ⟂ 𝑦1 ∣ 𝑥 = 𝑥 for all 𝑥 ∈ 𝒳 (which is a stronger assumption and implies 𝜙 = 0), then
the counterfactual probabilities can be estimated as

𝛼 = 𝔼[(1 − 𝑆0(𝑥))(1 − 𝑆1(𝑥))] (6.44)

𝛽 = 𝔼[𝑆0(𝑥)(1 − 𝑆1(𝑥))] (6.45)

𝛾 = 𝔼[(1 − 𝑆0(𝑥))𝑆1(𝑥)] (6.46)

𝛿 = 𝔼[𝑆0(𝑥)𝑆1(𝑥)]. (6.47)

The question of the dependency between 𝑦0 and 𝑦1 has already been discussed in
the causal inference literature (G.W. Imbens and Donald B Rubin, 2015, Sec. 8.6). When
there is a lack of evidence in favor of or against the dependency between the potential
outcomes, a cautious approachwould be tominimize risk by considering theworst-case
scenario, for example by assuming the highest possible level of dependency between
the potential outcomes. Alternatively, one could make no a priori preference between
a positive and negative association between 𝑦0 and 𝑦1 (i.e., 𝑦0 and 𝑦1 taking similar or
opposite values), thus assuming no association. Since there is no a priori good answer in
absence of some preexisting knowledge, we can reason about the dependency between
𝑦0 and 𝑦1 as follows:

• A positive correlation2 between 𝑦0 and 𝑦1 means that they are often equal, indi-
cating that the treatment has little effect on the outcome. When the correlation
is maximum, the upper bounds on 𝛼 and 𝛿 in Eqs. (6.24) and (6.27) are met.

• A negative correlation between 𝑦0 and 𝑦1 indicates that the treatment has either
a strongly positive or negative impact on the outcome. When the correlation is
maximally negative, the upper bounds on 𝛽 and 𝛾 in Eqs. (6.25) and (6.26) are
met.

• The absence of dependency indicates an even mix of the two previous cases. This
corresponds to the point estimator presented in this section.

2The correlation between 𝑦 0 and 𝑦 1 refers to the tendency of 𝑦 0 and 𝑦 1 to take identical or complentary
values.
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6.3.1 Point estimate and uplift estimation

Given estimators ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr) of the uplift terms trained on a training dataset
𝐷tr, and given an evaluation dataset 𝐷te = {𝑥(𝑖)}𝑖=1,…,𝑁 , we propose to estimate 𝛼, … , 𝛿
as follows:

𝛼̂ = 1
𝑁 ∑

𝑖
(1 − ̂𝑆0(𝑥(𝑖), 𝐷tr)(1 − ̂𝑆1(𝑥(𝑖), 𝐷tr)) (6.48)

̂𝛽 = 1
𝑁 ∑

𝑖
̂𝑆0(𝑥(𝑖), 𝐷tr)(1 − ̂𝑆1(𝑥(𝑖), 𝐷tr)) (6.49)

̂𝛾 = 1
𝑁 ∑

𝑖
(1 − ̂𝑆0(𝑥(𝑖), 𝐷tr)) ̂𝑆1(𝑥(𝑖), 𝐷tr) (6.50)

̂𝛿 = 1
𝑁 ∑

𝑖
̂𝑆0(𝑥(𝑖), 𝐷tr) ̂𝑆1(𝑥(𝑖), 𝐷tr). (6.51)

The bias of these estimators is expressed in Theorem 6.2.

Theorem 6.2. Given that ̂𝑆0(𝑥, 𝐷tr) and ̂𝑆1(𝑥, 𝐷tr), trained on a training dataset sampled
from a distribution 𝐷tr, are unconfounded and unbiased estimators of 𝑆0(𝑥) and 𝑆1(𝑥), in
the large sample limit the bias of 𝛼̂ , … , ̂𝛿 estimated on a test dataset 𝐷te = {𝑥(𝑖)}𝑁𝑖=1 iid to
𝐷t𝑟 is

Bias[ ̂𝛽] = Bias[ ̂𝛾 ] = −Bias[𝛼̂] = −Bias[ ̂𝛿] (6.52)

= 𝛼𝛿 − 𝛽𝛾 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥)) − 𝔼𝑥 [cov𝐷tr
( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)] (6.53)

= 𝜙 − 𝔼𝑥 [cov𝐷tr
( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)]. (6.54)

Proof. We will derive the bias of ̂𝛽 , and the bias of the three other estimators can be
derived in a similar way. The expected value of ̂𝛽 over the distribution of training sets
𝐷tr is

𝔼𝐷tr
[ ̂𝛽] = 𝔼𝐷tr

[ 1
𝑁

𝑁
∑
𝑖=1

̂𝑆0(𝑥(𝑖), 𝐷tr)(1 − ̂𝑆1(𝑥(𝑖), 𝐷tr))]

= 1
𝑁

𝑁
∑
𝑖=1

𝔼𝐷tr
[ ̂𝑆0(𝑥(𝑖), 𝐷tr)(1 − ̂𝑆1(𝑥(𝑖), 𝐷tr))]

= 1
𝑁

𝑁
∑
𝑖=1

𝔼𝐷tr
[ ̂𝑆0(𝑥(𝑖), 𝐷tr)]𝔼𝐷tr

[1 − ̂𝑆1(𝑥(𝑖), 𝐷tr)]

+ cov𝐷tr
( ̂𝑆0(𝑥(𝑖), 𝐷tr), 1 − ̂𝑆1(𝑥(𝑖), 𝐷tr))

= 1
𝑁

𝑁
∑
𝑖=1

𝑆0(𝑥(𝑖))(1 − 𝑆1(𝑥(𝑖))) − cov𝐷tr
( ̂𝑆0(𝑥(𝑖), 𝐷tr), ̂𝑆1(𝑥(𝑖), 𝐷tr)).

In the large sample limit (𝑁 → +∞), we can assume that this sum converges to

lim𝑁→∞𝔼𝐷tr
[ ̂𝛽] = 𝔼𝑥 [𝑆0(𝑥)(1 − 𝑆1(𝑥))] − 𝔼𝑥 [cov𝐷tr

( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)].
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Algorithm 1 Estimating the counterfactual probability 𝛽
Input: dataset 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑖=1,…,𝑁
Output: Point estimate ̂𝛽 , and bounds L̂B𝛽 and ÛB𝛽 such that L̂B𝛽 ≤ 𝛽 ≤ ÛB𝛽
Split 𝐷 into training set 𝐷tr and test set 𝐷te
Train uplift model on 𝐷tr to obtain estimators ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)̂𝛽 = 1

|𝐷te| ∑𝑖 ̂𝑆0(𝑥(𝑖), 𝐷tr)(1 − ̂𝑆1(𝑥(𝑖), 𝐷tr)) on 𝐷te

L̂B𝛽 = 1
|𝐷te| ∑𝑖 max{0, ̂𝑆0(𝑥(𝑖), 𝐷tr) − ̂𝑆1(𝑥(𝑖), 𝐷tr)} on 𝐷te

ÛB𝛽 = 1
|𝐷te| ∑𝑖 min{ ̂𝑆0(𝑥(𝑖), 𝐷tr), 1 − ̂𝑆1(𝑥(𝑖), 𝐷tr)} on 𝐷te

The first term can be expanded as

𝔼[𝑆0(𝑥)(1 − 𝑆1(𝑥))] = 𝔼[𝑆0(𝑥)]𝔼[1 − 𝑆1(𝑥)] + cov𝑥 (𝑆0(𝑥), 1 − 𝑆1(𝑥))
= 𝑆0(1 − 𝑆1) − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥))
= (𝛽 + 𝛿)(𝛽 + 𝛼) − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥))
= 𝛽(𝛽 + 𝛿 + 𝛼) + 𝛼𝛿 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥))
= 𝛽(1 − 𝛾) + 𝛼𝛿 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥))
= 𝛼𝛿 − 𝛽𝛾 + 𝛽 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥)).

And thus

𝔼𝐷tr
[ ̂𝛽] = 𝛼𝛿 − 𝛽𝛾 + 𝛽 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥)) − 𝔼𝑥 [cov𝐷tr

( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)].

Finally, the bias of ̂𝛽 is

Bias[ ̂𝛽] = 𝔼𝐷tr
[ ̂𝛽] − 𝛽

= 𝛼𝛿 − 𝛽𝛾 − cov𝑥 (𝑆0(𝑥), 𝑆1(𝑥)) − 𝔼𝑥 [cov𝐷tr
( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)],

which proves Eq. (6.53). Equation (6.54) is derived from

𝔼[𝑆0(𝑥)(1 − 𝑆1(𝑥))] = 𝔼[𝛽(𝑥) + 𝜙(𝑥)] = 𝛽 + 𝜙

And then

Bias[ ̂𝛽] = 𝔼𝐷tr
[ ̂𝛽] − 𝛽

= 𝔼𝑥 [𝑆0(𝑥)(1 − 𝑆1(𝑥))] − 𝔼𝑥 [cov𝐷tr
( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)] − 𝛽

= 𝜙 − 𝔼𝑥 [cov𝐷tr
( ̂𝑆0(𝑥, 𝐷tr), ̂𝑆1(𝑥, 𝐷tr)].

While the three first terms in Eq. (6.53) are inherent to the customer population, the
last term depends also on the estimators ̂𝑆0(𝑥, 𝐷tr) and ̂𝑆1(𝑥, 𝐷tr), and the data distribu-
tion 𝐷tr. Without assumptions about these processes, the last term cannot be further
reduced.

The proposed procedure to compute ̂𝛽 , as well as the two uplift bounds on 𝛽 pre-
sented in Section 6.2, is described in Algorithm 1, where we assume that we have unbi-
ased estimators of the scores 𝑆0(𝑥) and 𝑆1(𝑥).
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6.4 Posterior distribution of counterfactuals with a
bivariate beta distribution

In the experimental section of Chapter 5, we used the bivariate beta distribution de-
veloped by Olkin and Trikalinos (2015) to simulate uplift modeling without having to
generate a dataset and train an uplift model directly. The bivariate beta distribution
can generate samples that represent the output of an uplift model trained under var-
ious conditions, such as varying degrees of class imbalance and mutual information
between the emulated features and the potential outcomes. Having control over these
characteristics of the simulation is crucial to understand the empirical results of Chap-
ter 4, where uplift modeling seems to perform well on the Hillstrom dataset (where
the potential outcomes are balanced and the features are informative) but not on the
churn datasets (where the potential outcomes are unbalanced and the features are not
very informative). A very convenient property of the bivariate beta distribution used
in Section 5.3.3 is that it first generates the probability of counterfactuals for each in-
dividual before summing them to obtain the uplift scores. This property allowed us to
examine the distribution of counterfactuals resulting in a given set of uplift scores in
the simulations.

In this section, we use the same bivariate beta distribution, but instead of directly
specifying the parameters of the distribution, we fit the parameters to an existing
dataset. This procedure provides an estimator for the probability of counterfactuals for
this dataset, since the counterfactual distribution is modeled by the bivariate beta distri-
bution under the hood. More precisely, we obtain a point estimate for the population-
level counterfactuals 𝛼, … , 𝛿 , and a posterior distribution over the possible values for
the individual-level counterfactuals 𝛼(𝑥), … , 𝛿(𝑥) for any realization 𝑥 of the features
𝑥 .

As mentioned in Section 2.2.1, quantities belonging the third layer of the causal
hierarchy (i.e., counterfactual probabilities) cannot be uniquely determined from infor-
mation or assumptions pertaining to the lower layers (observational and experimental
data). Fitting a bivariate beta distribution to the uplift scores represents an inductive
bias over the distribution of counterfactuals and, as such, is an assumption on the data-
generating process governing the potential outcomes. This is the critical element that
allows us to infer an exact value for counterfactual probabilities based on experimental
data, much like the conditional independence assumption used in Section 6.3.

6.4.1 Summary of the approach

The bivariate beta distribution, noted (𝑆0, 𝑆1) ∼ BB(𝑚) for for a vector of positive pa-
rameters 𝑚 = [𝑎, 𝑏, 𝑐, 𝑑], is a bivariate distribution with beta marginals. We derive
several properties of this distribution in Appendix D. Sampling from this distribution
is done in two steps. First, we sample a four-valued random vector 𝜇 = [𝛼, 𝛽, 𝛾 , 𝛿] (that
we also note [𝜇1, 𝜇2, 𝜇3, 𝜇4]) from a Dirichlet distribution Dir(𝑚), which is noted

𝜇 ∼ Dir(𝑚). (6.55)

Then, the scores 𝑆0, 𝑆1 are defined as

𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿. (6.56)
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Using this procedure, we can show from the properties of the Dirichlet distribution
(Lin, 2016) that 𝑆0 and 𝑆1 have marginal beta distributions, noted

𝑆0 ∼ Beta(𝑏 + 𝑑, 𝑎 + 𝑐) and 𝑆1 ∼ Beta(𝑐 + 𝑑, 𝑎 + 𝑏). (6.57)

Finally, the binary potential outcomes 𝑦0, 𝑦1 are defined as following a categorical
distribution (𝑦0, 𝑦1) ∼ Cat(𝜇), which is a shorthand notation for

𝑃(𝑦0 = 0, 𝑦1 = 0 ∣ 𝜇 = 𝜇) = 𝛼 (6.58)

𝑃(𝑦0 = 1, 𝑦1 = 0 ∣ 𝜇 = 𝜇) = 𝛽 (6.59)

𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝜇 = 𝜇) = 𝛾 (6.60)

𝑃(𝑦0 = 1, 𝑦1 = 1 ∣ 𝜇 = 𝜇) = 𝛿. (6.61)

In this section, the random variables 𝛼, 𝛽, 𝛾 , 𝛿 , 𝑆0 and 𝑆1 denote probabilities at the
individual level, similarly to 𝛼(𝑥), 𝛽(𝑥), 𝛾 (𝑥), 𝛿(𝑥), 𝑆0(𝑥), and 𝑆1(𝑥). Thus, 𝛼 does not
represent the population-level probability 𝑃(𝑦0 = 0, 𝑦1 = 1). Instead, we have 𝑃(𝑦0 =
0, 𝑦1 = 0) = 𝔼[𝛼]. In Section 5.3.3, we used the superscript 𝛼 (𝑖) to make this fact evident.
In this section, we do not use superscript notation to avoid confusion with samples in

a training set 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1, at the risk of being slightly more confusing.
Our approach consists of two phases. First, the learning phase consists of

1. Using a dataset 𝐷 = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 to train an uplift model, providing a set

of predicted scores 𝐹 = {( ̂𝑆0(𝑥(𝑖)), ̂𝑆1(𝑥(𝑖)))}
𝑁
𝑖=1 where ̂𝑆𝑡(𝑥(𝑖)) is an estimator of

𝑃(𝑦 𝑡 = 1 ∣ 𝑥 = 𝑥(𝑖)) for 𝑡 = 0, 1.
2. Fitting a bivariate beta distribution BB(𝑎, 𝑐, 𝑏, 𝑑) on this set of scores.

Then, we infer the counterfactual probabilities in the inference phase. Using the mo-
ments of the Dirichlet distribution, the population-level counterfactuals are readily
available as

𝑃(𝑦0 = 0, 𝑦1 = 0) = 𝔼[𝛼] = 𝑎
𝑀 𝑃(𝑦0 = 1, 𝑦1 = 0) = 𝔼[𝛽] = 𝑏

𝑀 (6.62)

𝑃(𝑦0 = 0, 𝑦1 = 1) = 𝔼[𝛾] = 𝑐
𝑀 𝑃(𝑦0 = 1, 𝑦1 = 1) = 𝔼[𝛿] = 𝑑

𝑀 (6.63)

where𝑀 = 𝑎+𝑏+𝑐+𝑑 . Individual-level counterfactual probabilities for a new sample 𝑥′
are estimated by computing the posterior probability distribution of 𝛼(𝑥′), … , 𝛿(𝑥′) that
is compatible with the scores ̂𝑆0(𝑥′) and ̂𝑆1(𝑥′). We propose to estimate 𝛼(𝑥′), … , 𝛿(𝑥′)
with the expected value of this posterior distribution.

6.4.2 Learning phase

In this section, we describe the mathematical details of the learning phase. We use
several properties of the bivariate beta distribution that are derived in Appendix D.

1. Train an uplift model on 𝐷 to estimate the probability scores

̂𝑆0(𝑥(𝑖)) ≈ 𝑃(𝑦0 = 1 ∣ 𝑥 = 𝑥(𝑖)) (6.64)
̂𝑆1(𝑥(𝑖)) ≈ 𝑃(𝑦1 = 1 ∣ 𝑥 = 𝑥(𝑖)) (6.65)

We note the set of predicted scores as 𝐹 = {( ̂𝑆0(𝑥(𝑖)), ̂𝑆0(𝑥(𝑖)))}
𝑁
𝑖=1.
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2. Fit a bivariate beta distribution BB(𝑎, 𝑏, 𝑐, 𝑑) on 𝐹 using the method of moments.
More precisely, we use an optimization procedure to find the value of 𝑚 that
minimizes the square difference between the raw sample moments from 𝐹 and
the raw distribution moments of BB(𝑚). We use the Trust Region Reflective al-
gorithm (Branch, Coleman, and Yuying Li, 1999) implemented by the Python
package SciPy.3 This function requires four elements as input:

a) The raw sample moments, for 𝑟 , 𝑠 ∈ ℕ:

𝑅𝑟 𝑠 = 1
𝑁

𝑁
∑
𝑖=1

( ̂𝑆0(𝑥(𝑖)))
𝑟 ( ̂𝑆1(𝑥(𝑖)))

𝑠
(6.66)

In practice, we use the first 7 rawmoments, that is, (𝑟 , 𝑠) ∈ {(0, 1), (1, 0), (2, 0),
(1, 1), (0, 2), (3, 0), (0, 3)}. Preliminary results suggest that the choice of the
moments has a minimal impact on the results as long as we use at least the
first four moments.

b) The loss, defined as the square difference between the sample moments 𝑅𝑟 𝑠
and the distribution moments 𝑅𝑚𝑟𝑠(𝑆0, 𝑆1) for the current value of 𝑚:

𝐿(𝑚) = 1
2 ∑

𝑟 ,𝑠
(𝑅𝑚𝑟𝑠(𝑆0, 𝑆1) − 𝑅𝑟 𝑠)2. (6.67)

The analytical formula for 𝑅𝑚𝑟𝑠(𝑆0, 𝑆1) is given in Result D.2.

c) The gradient vector of the loss, which is computed from the Jacobian ma-
trix of the moments with respect to the components of 𝑚. The analytical
formula is given in Result D.3.

d) An initial solution 𝑎(0), 𝑏(0), 𝑐(0), 𝑑(0). We found the following initial solution
using the first four moments (𝑟 , 𝑠) ∈ {(1, 0), (0, 1), (2, 0), (0, 2)}. The deriva-
tion is given in Result D.4.

𝑀(0) = 1
2 (𝑅10 − 𝑅20

𝑅20 − 𝑅210
+ 𝑅01 − 𝑅02

𝑅02 − 𝑅201
) (6.68)

𝑎(0) = 𝑀(0)(1 − 𝑅10)(1 − 𝑅01) (6.69)

𝑏(0) = 𝑀(0)𝑅10(1 − 𝑅01) (6.70)

𝑐(0) = 𝑀(0)(1 − 𝑅10)𝑅01 (6.71)

𝑑(0) = 𝑀(0)𝑅10𝑅01. (6.72)

6.4.3 Inference phase

Once the distribution has been learned andwe have fitted the parameters𝑚 = [𝑎, 𝑏, 𝑐, 𝑑],
we can proceed to the inference phase. This consists in estimating, for any set of uplift
scores ̂𝑆0(𝑥(𝑖)), ̂𝑆1(𝑥(𝑖)), which, in this section, we note 𝑆0 and 𝑆1 for simplicity (these
should not be confused with Eqs. 3.4 and 3.5), the posterior probability distribution
𝛼, … , 𝛿 ∣ 𝑆0 = 𝑆0, 𝑆1 = 𝑆1. In fact, we directly compute the expected value of this
posterior distribution. The following two new results facilitate this computation.

3scipy.optimzie.least_squares
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Result 6.3. The expected value of 𝜇𝑗 for 𝑗 = 1, … , 4 (i.e., the 𝑗th component of 𝜇, corre-
sponding to one of 𝛼, … , 𝛿) given that we observe the realization 𝑆0, 𝑆1 of 𝑆0, 𝑆1 ∼ BB(𝑚)
can be expressed as

𝔼[𝜇𝑗 ∣ 𝑆0, 𝑆1] =
𝑚𝑗
𝑀

𝑓𝑆0,𝑆1(𝑚′; 𝑆0, 𝑆1)
𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1)

. (6.73)

where 𝑓𝑆0,𝑆1(𝑚; ⋅) is the probability density function of 𝑆0, 𝑆1 with parameter vector𝑚, and
𝑚′ is the vector 𝑚 with the 𝑗th component incremented by one, that is, 𝑚′ = [𝑚1, … , 𝑚𝑗 +
1,… , 𝑚4], and 𝑀 = 𝑚1 + 𝑚2 + 𝑚3 + 𝑚4.

Proof. By the definition of the conditional expected value (Definition 2.2), we have

𝔼[𝜇𝑗 ∣ 𝑆0, 𝑆1] =
∫
1

0
𝜇𝑗𝑓𝜇𝑗 ,𝑆0,𝑆1(𝑚; 𝜇𝑗 , 𝑆0, 𝑆1) d𝜇𝑗

𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1)
(6.74)

where 𝑓𝜇𝑗 ,𝑆0,𝑆1(𝑚; 𝜇𝑗 , 𝑆0, 𝑆1) is the joint pdf of 𝜇𝑗 , 𝑆0, 𝑆1. The pdf 𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1) is defined
as (Olkin and Trikalinos, 2015)

𝑓𝑆0,𝑆1(𝑆0, 𝑆1) = ∫Λ(𝑆0,𝑆1)
𝑓𝜇(𝑚; 𝜇) d𝜇 (6.75)

where 𝑓𝜇(𝑚, ⋅) is the pdf the random vector 𝜇 following a Dirichlet distribution (see
Eq. 2.39), and where the integration domain is

Λ(𝑆0, 𝑆1) = {𝜇 = [𝛼, 𝛽, 𝛾 , 𝛿] ∈ Λ ∣ 𝛽 + 𝛿 = 𝑆0, 𝛾 + 𝛿 = 𝑆1} (6.76)

with Λ the four-dimensional unit simplex (see Eq. 2.38). The joint pdf 𝑓𝜇𝑗 ,𝑆0,𝑆1(𝑚; ⋅, ⋅) in
the numerator of Eq. (6.74) can be marginalized by integrating over the other compo-
nents of 𝜇. For example, if 𝜇𝑗 is 𝛽 (that is, 𝑗 = 2), we have

𝑓𝛽,𝑆0,𝑆1(𝑚; 𝛽, 𝑆0, 𝑆1) = ∫
1−𝛽

0 ∫
1−𝛼−𝛽

0 ∫
1−𝛼−𝛽−𝛾

0
𝑓𝜇,𝑆0,𝑆1(𝑚; [𝛼, 𝛽, 𝛾 , 𝛿], 𝑆0, 𝑆1) d𝛿 d𝛾 d𝛼.

Since 𝑆0 and 𝑆1 are defined as 𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿 , we have

𝑓𝑆0,𝑆1∣𝜇(𝑚; 𝑆0, 𝑆1) = {1 if 𝛽 + 𝛿 = 𝑆0 and 𝛾 + 𝛿 = 𝑆1,
0 otherwise.

Therefore,

𝑓𝜇,𝑆0,𝑆1(𝑚; 𝜇, 𝑆0, 𝑆1) = 𝑓𝑆0,𝑆1∣𝜇(𝑚; 𝑆0, 𝑆1)𝑓𝜇(𝑚; 𝜇)

= {𝑓𝜇(𝑚; 𝜇) if 𝛽 + 𝛿 = 𝑆0 and 𝛾 + 𝛿 = 𝑆1,
0 otherwise.

The set of values of 𝜇 that respect these two constraints (𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿) is
noted Λ(𝑆0, 𝑆1). This allows us to develop the numerator of Eq. (6.74) as

∫
1

0
𝜇𝑗𝑓𝜇𝑗 ,𝑆0,𝑆1(𝑚; 𝜇𝑗 , 𝑆0, 𝑆1) d𝜇𝑗 = ∫Λ(𝑆0,𝑆1)

𝜇𝑗𝑓𝜇(𝑚; 𝜇) d𝜇,
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leading to

𝔼[𝜇𝑗 ∣ 𝑆0, 𝑆1] =
∫Λ(𝑆0,𝑆1)

𝜇𝑗𝑓𝜇(𝑚; 𝜇) d𝜇
𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1)

. (6.77)

We now transform the numerator of Eq. (6.77) into an expression similar to the pdf
𝑓𝑆0,𝑆1(𝑚, ⋅). As in the statement of the result, let 𝑚′ be the vector 𝑚 with the 𝑗th com-
ponent incremented by one, that is, 𝑚′ = [𝑚1, … , 𝑚𝑗 + 1,… , 𝑚4]. The numerator of
Eq. (6.77) can be developed as

∫Λ(𝑆0,𝑆1)
𝜇𝑗𝑓𝜇(𝑚; 𝜇) d𝜇 = 1

Β(𝑚) ∫Λ(𝑆0,𝑆1)
𝜇𝑗

4
∏
𝑘=1

𝜇𝑚𝑘−1𝑘 d𝜇 (by Eq. 2.39)

= Β(𝑚′)
Β(𝑚)Β(𝑚′) ∫Λ(𝑆0,𝑆1)

𝜇𝑚𝑗
𝑗 ∏

𝑘≠𝑗
𝜇𝑚𝑘−1𝑘 d𝜇

= Β(𝑚′)
Β(𝑚) 𝑓𝑆0,𝑆1(𝑚

′; 𝑆0, 𝑆1) (by Eq. 6.75)

= 𝑚𝑗
𝑀 𝑓𝑆0,𝑆1(𝑚′; 𝑆0, 𝑆1)

where the last equality follows from the definition of the beta function in terms of the
gamma function (see Eq. 2.31), using the property Γ(𝑥 + 1) = 𝑥Γ(𝑥):

Β(𝑚′)
Β(𝑚) =

Γ(𝑚𝑗 + 1)∏𝑖≠𝑗 Γ(𝑚𝑖)
Γ(𝑀 + 1)

Γ(𝑀)
∏4

𝑖=1 Γ(𝑚𝑖)
= Γ(𝑚𝑗)𝑚𝑗Γ(𝑀)

Γ(𝑀)𝑀Γ(𝑚𝑗)
= 𝑚𝑗

𝑀 .

In summary, we can express Eq. (6.77) as

𝔼[𝜇𝑗 ∣ 𝑆0, 𝑆1] =
𝑚𝑗
𝑀

𝑓𝑆0,𝑆1(𝑚′; 𝑆0, 𝑆1)
𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1)

.

According to this result, if we can compute the value of 𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1) for any vec-
tor 𝑚, we can estimate the expected value of the counterfactual distribution. The fol-
lowing result expresses 𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1) into an expression that can be easily computed
with any numerical integration routine, such as the function scipy.integrate.quad
in the the Python package SciPy.

Result 6.4. The probability density function of (𝑆0, 𝑆1) ∼ BB(𝑚) can be expressed as

𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1) = 1
Β(𝑚) ∫

min{𝑆0,𝑆1}

max{0,𝑆0+𝑆1−1}
(𝑆0+𝑆1−𝛿)𝑎−1(𝑆0−𝛿)𝑏−1(𝑆1−𝛿)𝑐−1𝛿𝑑−1 d𝛿. (6.78)

Proof. As shown in Eq. (6.75), the pdf of 𝑆0, 𝑆1 is defined as an integral over a setΛ(𝑆0, 𝑆1)
of four-dimensional vectors 𝜇. Since the components of 𝜇 must sum up to one, the set
has only three degrees of freedom; for example, given the value of 𝛽 , 𝛾 and 𝛿 , the value
of 𝛼 is determined as 1 − 𝛽 − 𝛾 − 𝛿 . The two additional constraints 𝛽 + 𝛿 = 𝑆0 and
𝛾 + 𝛿 = 𝑆1 remove two other degrees of freedom; if we know 𝑆0, 𝑆1 and, for example,
𝛿 , we can determine the value of 𝛼 , 𝛽 and 𝛾 . Hence, the set Λ(𝑆0, 𝑆1) is in fact a one-
dimensional line in the four-dimensional unit simplex. In the following, we will fix the
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value of 𝛿 , which has to lie between the Fréchet bounds (see Eq. 6.18), otherwise one of
𝛼 , 𝛽 or 𝛾 would have to be negative to satisfy the constraints 𝛽 + 𝛿 = 𝑆0 and 𝛾 + 𝛿 = 𝑆1.
The Fréchet bounds on 𝛿 are

max{0, 𝑆0 + 𝑆1 − 1} ≤ 𝛿 ≤ min{𝑆0, 𝑆1}. (6.79)

Given 𝑆0, 𝑆1 and 𝛿 , the other probabilities are

𝛼 = 𝑆0 + 𝑆1 − 𝛿, (6.80)

𝛽 = 𝑆0 − 𝛿, (6.81)

𝛾 = 𝑆1 − 𝛿. (6.82)

Using this result, the set Λ(𝑆0, 𝑆1) can be defined by varying a single parameter:

Λ(𝑆0, 𝑆1) = {[𝑆0 + 𝑆1 − 𝛿, 𝑆0 − 𝛿, 𝑆1 − 𝛿, 𝛿] ∣ max{0, 𝑆0 + 𝑆1 − 1} ≤ 𝛿 ≤ min{𝑆0, 𝑆1}}. (6.83)

This allows us to express Eq. (6.75) into an integral over a real interval:

𝑓𝑆0,𝑆1(𝑚; 𝑆0, 𝑆1) = 1
Β(𝑚) ∫

min{𝑆0,𝑆1}

max{0,𝑆0+𝑆1−1}
(𝑆0+𝑆1−𝛿)𝑎−1(𝑆0−𝛿)𝑏−1(𝑆1−𝛿)𝑐−1𝛿𝑑−1 d𝛿. (6.84)

6.4.4 Generalized Dirichlet distribution

As discussed above, the bivariate beta distribution BB(𝑚) enforces an inductive bias on
the distribution fitted to the scores 𝑆0(𝑥) and 𝑆1(𝑥). In particular, this distribution en-
sures that the scores have marginal beta distributions Beta(𝑎0, 𝑏0) and Beta(𝑎1, 𝑏1) such
that 𝑎0 + 𝑏0 = 𝑎1 + 𝑏1. Furthermore, the bivariate beta distribution puts constraints on
the possible covariance structures between the counterfactuals 𝛼, … , 𝛿 , since the dis-
tribution has only four parameters, while the covariance matrix of 𝛼, … , 𝛿 contains 10
possiblity different values. In fact, Ongaro andMigliorati (2013) showed that the covari-
ance between counterfactuals is restricted to be proportional to the product between
their marginal expected values. Although these two constraints can be useful induc-
tive biases, it can be interesting to see if alleviating them can improve the estimation
of counterfactuals.

To reduce the inductive bias imposed by the bivariate beta distribution, we adapt the
procedure described in Section 6.4.1 with the generalized Dirichlet distribution (Connor
and Mosimann, 1969). This distribution, as its name suggests, is a generalization of the
Dirichlet distribution. It has the same domain, but more parameters. When considering
four-dimensional vectors, it is defined with six positive real parameters, which we note
𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3. The generalized Dirichlet reduces to the Dirichlet Dir(𝑎, 𝑏, 𝑐, 𝑑)when
the following equalities hold:

𝑎1 = 𝑎 𝑎2 = 𝑏 𝑎3 = 𝑐 (6.85)

𝑏1 = 𝑎2 + 𝑏2 𝑏2 = 𝑎3 + 𝑏3 𝑏3 = 𝑑 (6.86)

We note a random vector 𝜇 = [𝛼, 𝛽, 𝛾 , 𝛿] following the generalized Dirichlet distribution
as 𝜇 ∼ GD(𝑎1, … , 𝑏3). Its probability density function is

𝑓𝜇(𝜇) = 1
∏3

𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)
𝛼𝑎1−1𝛽𝑎2−1𝛾 𝑎3−1𝛿𝑏3−1(𝛽 + 𝛾 + 𝛿)𝑏1−𝑎2−𝑏2(𝛾 + 𝛿)𝑏2−𝑎3−𝑏3 . (6.87)

128



6.4. Posterior distribution of counterfactuals with a bivariate beta distribution

All the equations and results used in Sections 6.4.2 and 6.4.3 can be adapted to the
generalized Dirichlet distribution, but we defer the derivations to Appendix D.2. The
resulting bivariate distribution is named the generalized bivariate beta distribution (GBB
for short).4 This distribution is noted (𝑆0, 𝑆1) ∼ GBB(𝑎1, … , 𝑏3).

6.4.5 Noisy predictions

Due to the finite size of the training set, among other factors, the scores ̂𝑆0(𝑥), ̂𝑆0(𝑥) pre-
dicted by the upliftmodel in the first step of the learning phase described in Section 6.4.2
are subject to estimation errors. However, in the inference phase, we implicitly assume
that we have the exact scores 𝑆0(𝑥) and 𝑆1(𝑥) to infer the counterfactual probabilities.
It could be desirable to take into account the uncertainty of the predicted scores.

For that, we develop another extension of the bivariate beta distribution fromOlkin
and Trikalinos (2015) where some noise is added to the scores 𝑆0, 𝑆1. In the simulation of
Section 5.3.3, we considered noisy scores following a normalized binomial distribution
1
𝑣 B(𝑆𝑡 , 𝑣) (with a positive integer 𝑣 ) to emulate the fact that scores are learned from a
set of realizations of the binary outcome 𝑦 . However, the possible values that can be
generated are limited to the set {1/v, 2/v, … , 1}. In this section, the noisy estimates follow
instead a beta distribution. More precisely, the the noisy estimates 𝑆̂ 𝑡 of the scores 𝑆 𝑡
are sampled as

𝑆̂0 ∼ Beta(𝜆0𝑆0, 𝜆0(1 − 𝑆0)) (6.88)

𝑆̂1 ∼ Beta(𝜆1𝑆1, 𝜆1(1 − 𝑆1)) (6.89)

where 𝜆0, 𝜆1 > 0 are real scale parameters. A higher value of 𝜆𝑡 leads to a lower es-
timator variance. Also, the expected value of 𝑆̂0 given the observation 𝑆0 = 𝑆0 is 𝑆0,
emulating an unbiased estimator. In fact, we have, for 𝑡 = 0, 1,

𝔼[𝑆̂ 𝑡 ∣ 𝑆 𝑡 = 𝑆𝑡 ] =
𝜆𝑡𝑆𝑡
𝜆𝑡

= 𝑆𝑡 , (6.90)

Var(𝑆̂ 𝑡 ∣ 𝑆 𝑡 = 𝑆𝑡) =
𝜆𝑡𝑆𝑡𝜆𝑡(1 − 𝑆𝑡)
𝜆2𝑡 (𝜆𝑡 + 1) = 𝑆𝑡(1 − 𝑆𝑡)

𝜆𝑡 + 1 . (6.91)

This confirms that higher values of 𝜆𝑡 induce a lower variance of the noise component.
The resulting bivariate distribution, which we name the noisy bivariate beta distri-

bution, noted NBB(𝑚, 𝜆0, 𝜆1), is sampled as follows.

𝜇 ∼ Dir(𝑚) (6.92)

𝑆0 = 𝛽 + 𝛿 (6.93)

𝑆1 = 𝛾 + 𝛿 (6.94)

𝑆̂ 𝑡 ∼ Beta(𝜆𝑡𝑆 𝑡 , 𝜆𝑡(1 − 𝑆 𝑡)) for 𝑡 = 0, 1. (6.95)

We can adapt the procedure of Sections 6.4.2 and 6.4.3 to fit the value of 𝑚 from the
data and predict the probability of counterfactuals. We defer the derivation of these
adaptations to Appendix D.3. An important aspect to consider is also to fit the value
of the parameters 𝜆0 and 𝜆1, which are proportional to the variance of the estimators
of the uplift terms. We propose to repeat 𝑛 times a 𝑘-fold cross-validation scheme to
generate a set of 𝑛 different predictions { ̂𝑆(1)𝑡 (𝑥(𝑖)), … , ̂𝑆(𝑛)𝑡 (𝑥(𝑖))} for each sample 𝑥(𝑖),

4This is a slight abuse of terminology, since the marginals do not necessarily have beta distributions.

129



6. Counterfactual identification

and then fit a beta distribution on this set of predictions. The scale parameter 𝜆(𝑖)𝑡 for
the sample 𝑥(𝑖) is found using the standard method of moments,

𝜆(𝑖)𝑡 = 𝑅(𝑖)
1 − 𝑅(𝑖)

2

𝑅(𝑖)
2 − (𝑅(𝑖)

1 )
2 (6.96)

where we use

𝑅(𝑖)
1 = 1

𝑛
𝑛
∑
𝑗=1

̂𝑆(𝑗)𝑡 (𝑥(𝑖)) and 𝑅(𝑖)
2 = 1

𝑛
𝑛
∑
𝑗=1

( ̂𝑆(𝑗)𝑡 (𝑥(𝑖)))2. (6.97)

We then assume that all samples have, on average, the same noise scale parameter 𝜆(𝑖)𝑡 ,
hence we compute the overall scale parameter 𝜆𝑡 with the average

𝜆𝑡 = 1
𝑁

𝑁
∑
𝑖=1

𝜆(𝑖)𝑡 . (6.98)

The parameters 𝜆0, 𝜆1 can be further optimized, together with 𝑚, using the method of
moments described in Section 6.4.3. However, we found that optimizing 𝜆0, 𝜆1 does
not bring about any significant improvement over fixing their values with the heuristic
described above.

6.4.6 Combining the two previous approaches

We can combine the variations described in Sections 6.4.4 and 6.4.5 by using the follow-
ing sampling procedure:

𝜇 ∼ GD(𝑎1, … , 𝑏3) (6.99)

𝑆0 = 𝛽 + 𝛿 (6.100)

𝑆1 = 𝛾 + 𝛿 (6.101)

𝑆̂ 𝑡 ∼ Beta(𝜆𝑡𝑆 𝑡 , 𝜆𝑡(1 − 𝑆 𝑡)) for 𝑡 = 0, 1. (6.102)

We note this distribution as (𝑆̂0, 𝑆̂1) ∼ NGBB(𝑎1, … , 𝑏3, 𝜆0, 𝜆1). The properties of this
distribution required for the learning phase and the inference phase are derived in Ap-
pendix D.4.

6.5 Assessment with simulations

In this section, we assess the bounds and estimators presented in Sections 6.2 to 6.4 with
simulated data. This allows to compare the estimators with the ground truth, which
is not feasible with real data. As in Sections 5.3.2 and 5.3.3, we use two different sim-
ulations: a data-generating process based on a Dirichlet distribution, and another one
based on a Gaussian distribution. With both simulations, we generate a large number
of samples and evaluate the various models developed in the previous sections. This
experiment is repeated a number of times with different parameters to obtain average
statistics of the performance of the different models.
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6.5. Assessment with simulations

6.5.1 Dirichlet simulation

The Dirichlet simulation is similar to the simulation used in Section 5.3.3 and is based
on the same probability distribution as that used in the model of Section 6.4. The main
difference from the simulation described in Section 5.3.3 is that the noisy estimators
are sampled from a beta distribution rather than a normalized binomial distribution.
We discussed the advantages of the beta distribution for emulating noisy estimators in
Section 6.4.5. The data-generating process is as follows.

𝜇 ∼ Dir(𝑎, 𝑏, 𝑐, 𝑑) (6.103)

(𝑦0, 𝑦1) ∼ Cat(𝜇) (6.104)

𝑆0 = 𝛽 + 𝛿 (6.105)

𝑆1 = 𝛾 + 𝛿 (6.106)

𝑆̂ 𝑡 ∼ Beta(𝜆𝑡𝑆 𝑡 , 𝜆𝑡(1 − 𝑆 𝑡)) for 𝑡 = 0, 1. (6.107)

The Dirichlet simulation is defined by seven parameters: 𝑁 (then number of sam-
ples), 𝑎, 𝑏, 𝑐, 𝑑, 𝜆0 and 𝜆1. Various properties of this distribution are derived in Ap-
pendix D. Here, we state the properties relevant to understanding the results presented
in the following sections.

• The parameter 𝑁 represents the size of the dataset on which the bounds and
estimators are evaluated. Lower values of 𝑁 lead to a larger variance in the final
results.

• Parameters 𝑎, 𝑏, 𝑐, 𝑑 are proportional to the distribution of counterfactuals 𝑃(𝑦0 =
0, 𝑦1 = 1), … , 𝑃(𝑦0 = 1, 𝑦1 = 1). For example, using the moments of the Dirichlet
distribution, we have

𝑃(𝑦0 = 1, 𝑦1 = 0) = 𝔼[𝛽] = 𝑏
𝑀 (6.108)

where 𝑀 = 𝑎 + 𝑏 + 𝑐 + 𝑑 .
• The value of 𝑀 influences the distribution of 𝛼, … , 𝛿 . High values of 𝑀 lead to
samples of 𝛼, … , 𝛿 to be more concentrated around their expected values (which
can be computed from Eq. 6.108), while low values of 𝑀 lead to samples where
one of 𝛼, … , 𝛿 is close to one while the three other values are close to zero. This
has an impact on the scores 𝑆0, 𝑆1 as well: they are close to their expected values
when𝑀 is large, and close to either zero or onewhen𝑀 is low. In loose terms, the
quantity 𝑀 represents the amount of information that the emulated covariates 𝑥
brings about the outcomes 𝑦0 and 𝑦1: when the features are not informative, the
scores 𝑆0(𝑥), 𝑆1(𝑥) are close to their prior probabilities 𝑃(𝑦0 = 1) and 𝑃(𝑦1 = 1),
while when the features are highly informative, the scores are close to either
zero or one. The exact relationship between the value of 𝑀 and the entropy of
the potential outcomes is formalized in Result D.1.

• Parameters 𝜆0 and 𝜆1 influence the variance of the simulated upliftmodel. Higher
values of 𝜆𝑡 (for 𝑡 = 0, 1) induce a lower variance, as demonstrated in Eq. (6.91).

In this experiment, we generate 𝑁 = 5000 samples. The Dirichlet parameters 𝑎, 𝑏, 𝑐, 𝑑
are determined as [𝑎, 𝑏, 𝑐, 𝑑] = 𝑀[𝛼, 𝛽, 𝛾 , 𝛿] where 𝑀 is sampled between 0.01 and 10,
and the vector [𝛼, 𝛽, 𝛾 , 𝛿] is sampled uniformly over the simplex. The noise parameters
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6. Counterfactual identification

𝜆0 and 𝜆1 are sampled uniformly in [500, 1500]. The whole experiment (sampling the
data and evaluating the different models) is repeated 30 times.

Theorem 6.2 indicates that the bias of the point estimators 𝛼̂ , … , ̂𝛿 based on the
conditional independence assumption of Section 6.3 (transposed to the notation of this
section) is

𝔼[𝜙] − 𝔼𝛼,…,𝛿 [cov(𝑆̂0, 𝑆̂1)] (6.109)

where 𝜙 = 𝛼𝛿 − 𝛽𝛾 . The second term in Eq. (6.109) is null because we sample 𝑆̂0 and
𝑆̂1 independently in Eq. (6.107), but we can show using the product moments of the
Dirichlet distribution (Lin, 2016) that the first term 𝔼[𝜙] is

𝔼[𝜙] = 𝔼[𝛼𝛿 − 𝛽𝛾] = 𝑎𝑑 − 𝑏𝑐
𝑀(𝑀 + 1) . (6.110)

In this experiment, the parameters 𝑎, 𝑏, 𝑐, 𝑑 are sampled uniformly; therefore, the ex-
pression in Eq. (6.110) will generally be different from zero, and the bias of the point
estimators 𝛼̂ , … , ̂𝛿 will also be different from zero. This is desirable to assess how vio-
lations of the hypothesis underlying our estimators affect their performance.

6.5.2 Gaussian simulation

In the case of the Gaussian simulation, the procedure is the same as that used in Sec-
tion 5.3.2. The data-generating process is as follows.

𝑥 = [𝑥1, … , 𝑥𝑛] ∼ 𝒩 (0, 𝐼𝑛) (6.111)

𝜀 ∼ 𝒩 (0, 1) (6.112)

𝑦 𝑡 = 𝕀[𝜆𝑇𝑡 𝑥 + 𝜀 ≥ 𝜂𝑡 ] for 𝑡 = 0, 1 (6.113)

𝑆𝑡(𝑥) = Φ(𝜆𝑇𝑡 𝑥 − 𝜂𝑡) (6.114)

where 𝐼𝑛 is the identity matrix of size 𝑛 × 𝑛, 𝜆𝑡 ∈ ℝ𝑛 is a vector of the weights of the
features 𝑥1, … , 𝑥𝑛 used to determine the value of 𝑦 𝑡 , together with the threshold 𝜂𝑡 . In
total, the Gaussian distribution is defined by six parameters: 𝑁 , 𝑛, 𝜆0, 𝜆1, 𝜂0 and 𝜂1.

• Similarly to the Dirichlet simulation, the parameter 𝑁 is the number of samples
used to evaluate the estimators.

• The parameter 𝑛 is the number of features of the emulated uplift model. Since
all features 𝑥 𝑖 and the noise 𝜀 have the same distribution, a larger number of fea-
tures gives less importance to the noise 𝜀 in Eq. (6.113). Therefore, this emulates
the fact that the feature vector contains more information about the potential
outcomes.

• 𝜆𝑡 = [𝜆𝑡 ,1, … , 𝜆𝑡 ,𝑛] is a vector of parameters corresponding to the weight of each
feature in the value of 𝑦 𝑡 . Larger weights have a similar impact as a larger number
of features 𝑛, in that the importance of the noise 𝜀 is reduced, emulating more
informative features.

• 𝜂𝑡 is the threshold to determine the value of 𝑦 𝑡 , which in turn influences the
counterfactuals probabilities 𝛼, … , 𝛿 .
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6.5. Assessment with simulations

Table 6.2 Mean and standard deviation of the squared error of the different models
when estimating population-level counterfactuals 𝛼, … , 𝛿 . Note the different exponents
for the first two models. The models based on bivariate beta distribution consistently
perform best.

Model Dirichlet simulation Gaussian simulation

Independence (1.79 ± 5.62) × 10−3 (1.25 ± 0.32) × 10−2
Midpoint (1.16 ± 3.63) × 10−3 (1.91 ± 0.55) × 10−2
BB (0.87 ± 1.76) × 10−5 (0.36 ± 1.24) × 10−5
NBB (0.88 ± 1.75) × 10−5 (0.35 ± 1.24) × 10−5
GBB (0.86 ± 1.72) × 10−5 (0.78 ± 3.17) × 10−6
NGBB (0.88 ± 1.75) × 10−5 (1.14 ± 3.32) × 10−6

Table 6.3 Mean and standard deviation of the squared error of the different models
when estimating 𝛼(𝑥), … , 𝛿(𝑥). Results for NBB and NGBB are not shown due to pro-
hibitively long computation times on the Dirichlet simulation.

Model Dirichlet simulation Gaussian simulation

Independence (0.33 ± 1.12) × 10−2 (1.46 ± 0.56) × 10−2
Midpoint (0.23 ± 0.85) × 10−2 (2.23 ± 0.71) × 10−2
BB (0.18 ± 3.11) × 10−2 (0.67 ± 1.56) × 10−4
NBB – (0.72 ± 1.45) × 10−4
GBB (0.14 ± 2.78) × 10−2 (0.69 ± 1.91) × 10−4
NGBB – (0.71 ± 1.38) × 10−4

6.5.3 Results

The performance of the different models for the estimation of population-level counter-
factuals 𝛼, … , 𝛿 are shown in Table 6.2. We report the squared error between the true
value and the estimated value, averaged over the four counterfactuals and all 30 runs.
To have a baseline for comparison, we also report the performance of the midpoint of
the uplift bounds used as a point estimator. We see that the uplift bounds midpoint has
an error slightly lower than the independence estimator. All four methods based on fit-
ting a bivariate beta distribution perform much better than the independence and the
midpoint estimators, with an error lower by two orders of magnitude. The generalized
beta approaches, GBB and NGBB, provide a slight increase in performance, which is
especially noticeable on the Gaussian simulation.

The results for the estimation of individual-level counterfactuals 𝛼(𝑥), … , 𝛿(𝑥) are
shown in Table 6.3 and Fig. 6.1. Although fitting NBB and NGBB to the data takes
approximately as long as BB and GBB, computing counterfactuals involves two addi-
tional levels of integration, which significantly increases computation time. Therefore,
we are not able to report their results for individual-level counterfactual estimation on
the Dirichlet simulation. We see in Table 6.3 that the independence estimator performs
the worst, while GBB shows the best performance, although not by a large margin. As
in the case of population-level counterfactuals, the generalized beta distribution seems
to provide a slight improvement in performance for estimating individual-level coun-
terfactuals.

The average span of the Fréchet and uplift bounds on the population-level counter-
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Figure 6.1 Distribution of the squared error of the different models when estimating
𝛼(𝑥), … , 𝛿(𝑥) on the Dirichlet simulation. Results for NBB and NGBB are not shown
due to prohibitively long computation times.

Table 6.4 Mean and standard deviation of the span of the Fréchet and Uplift bounds.

Model Dirichlet simulation (%) Gaussian simulation (%)

Fréchet bounds 11.8 ± 12.6 31.7 ± 2.3
Uplift bounds 3.4 ± 5.9 27.4 ± 4.3

factuals 𝛼, … , 𝛿 is shown in Table 6.4 and Fig. 6.2. The uplift bounds are significantly
tighter than the Fréchet bounds with the Dirichlet simulation, with a span reduced by
a factor of approximately 3.5 on average. The improvement is not as dramatic with the
Gaussian simulation, but it is still significant.

We can summarize the results presented in this section as follows:

• The four models based on fitting the bivariate beta distribution show very good
performances for the estimation of population-level counterfactuals.

• The models based on the generalized Dirichlet distribution (GBB and NGBB, de-
scribed in Section 6.4.4) provide an improvement in performances compared to
BB and NBB, at the cost of an increased number of parameters

• Models incorporating the noise of the uplift scores in the model (NBB and NGBB,
as described in Section 6.4.5), do not seem to provide a significant advantage in
terms of performances, while suffering from a large increase in computation time
for individual-level counterfactuals.

• The BB and GBB approaches are themost effective for estimating individual-level
counterfactuals.
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Figure 6.2 Distribution of the bounds span for the Fréchet and uplift bounds on the
Dirichlet simulation.

• The uplift bounds significantly improve over the state-of-the-art Fréchet bounds.

6.5.4 Sensitivity analysis

In this section, we assess the influence of the training data on the quality of the estima-
tion in terms of the number of samples, the variance of the estimator, or the amount
of information between features and outcomes. We plot the span of the uplift bounds
and the error of the point estimator while varying one of the parameters 𝑀,𝑁 or 𝜆0, 𝜆1
and keeping the other parameters fixed. The values of the fixed parameters are se-
lected to clearly show the influence of the varying parameter. In particular, we set
[𝛼, 𝛽, 𝛾 , 𝛿] = [0.947, 0.020, 0.017, 0.017] based on the results of Section 6.6, which rep-
resents the distribution of counterfactuals in a typical scenario of customer churn in
telecom. The main conclusions of this sensitivity analysis are:

• The span of the uplift bounds decreases as 𝑀 decreases (Fig. 6.3), which is itself
directly linked to the mutual information between 𝑦0, 𝑦1 and 𝑥 . This is an em-
pirical illustration of Theorem 6.1. The relationship between 𝑀 and the mutual
information is formalized in Result D.1. We see that as𝑀 approaches zero (which
emulates very informative features), the bounds span converges towards zero as
well.

• The variance of the point estimator decreases as the number of samples 𝑁 in-
creases (Fig. 6.4) or the estimator variance Var(𝑆̂ 𝑡) decreases (Fig. 6.5). In fact,
the error converges towards the bias derived in Theorem 6.2. This demonstrates
the convergence of our estimator in the large sample scenario.

• The span of the uplift bounds increases as the estimator variance Var(𝑆̂ 𝑡) (for
𝑡 = 0, 1) decreases (Fig. 6.6). This is because a model with high variance often
predicts scores lower or higher than the expected score. Since the bounds span
is 𝔼[min{𝑆0, 𝑆1, 1 − 𝑆0, 1 − 𝑆1}] (see Eq. 6.31), this artificially reduces the bounds
span.
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Figure 6.3 The bounds span as a function of the parameter𝑀 , which is directly linked
to the conditional entropy 𝐻(𝑦0, 𝑦1 ∣ 𝜇), on the Dirichlet simulation. We fixed the
counterfactual probabilities [𝛼, 𝛽, 𝛾 , 𝛿] = [0.947, 0.020, 0.017, 0.017], 𝜆0 = 𝜆1 = 200 and
𝑁 = 5000.

Figure 6.4 The error of the point estimator as a function of the number of sam-
ples in the evaluation dataset on the Dirichlet simulation. We fixed [𝛼, 𝛽, 𝛾 , 𝛿] =
[0.947, 0.020, 0.017, 0.017], 𝜆0 = 𝜆1 = 200 and 𝑀 = 1.

Figure 6.5 The error of the point estimator as a function of estimator variance Var(𝑆̂ 𝑡).
We fixed [𝛼, 𝛽, 𝛾 , 𝛿] = [0.947, 0.020, 0.017, 0.017], and 𝑁 = 2000 and 𝑀 = 1. As the
variance decreases, the estimator bias converges towards to its theoretical value in the
large sample scenario.
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Figure 6.6 The uplift bounds span as a function of the estimator variance Var(𝑆̂ 𝑡). We
fixed [𝛼, 𝛽, 𝛾 , 𝛿] = [0.947, 0.020, 0.017, 0.017], and 𝑁 = 2000 and 𝑀 = 1. A lower estima-
tor variance is shown here to be associated with larger bounds. In fact, as the variance
goes to zero (left side of the plot), the bounds span converges towards its theoretical
value. A model with a high variance predicts more often low values, which artificially
reduces the bounds span.

6.6 Evaluation with real data

In this section, we apply the estimators and theoretical results presented in this chapter
to a real-world dataset provided by our industrial partner Orange Belgium, the Churn
2 dataset, presented in Section 4.1. First, in Section 6.6.1, we detail our methodology
and report the estimated distribution of counterfactuals over the whole campaign and
separately for each month in Section 6.6.2. Then, we analyze the distribution of some
customer features according to their inferred counterfactual category (persuadable, do-
not-disturb, etc.) in Section 6.6.3. Finally, we perform a profit analysis highlighting
the potential gains suggested by the estimated number of persuadable customers in
Section 6.6.4.

6.6.1 Methodology

We train an T-learner upliftmodel (see Section 3.1.2) on the Churn 2 dataset, augmented
with the R-featuremethodology presented in Section 4.4.1. In addition to having good
performances, this model provides separate estimators for 𝑆0(𝑥) and 𝑆1(𝑥), which is
essential for computing the uplift bounds and the point estimators. Similarly to the
benchmark in Section 4.2, we use a random forest as the base learner with 100 trees, a
maximum depth of 20 and a minimum of 10 samples per leaf. Given the high imbalance
of the datasets, we also rely on the EasyEnsemble strategy (X.-Y. Liu, Wu, and Zhou,
2009) for class balancing, described in Section 2.3.6.

When using a resampling strategy such as EasyEnsemble to obtain a balanced
dataset, the prior probability of churn is modified (Batista, Prati, and Monard, 2004),
and the scores predicted by the model are biased. We correct this bias with the calibra-
tion formula derived by Dal Pozzolo, Caelen, Johnson, et al. (2015). Let 𝑠 be a binary
random variable equal to zero for samples discarded by the resampling strategy, and
equal to one for the selected samples. For example, with EasyEnsemble, all positive
samples are selected (𝑠 = 1 if 𝑦 = 1), and a fraction of the negative samples are selected
uniformly at random, that is, 𝑃(𝑠 = 1 ∣ 𝑦 = 0) is equal to the proportion of under-
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sampling for negative outcomes. Let ̃𝑆(𝑥) = 𝑃(𝑦 = 1 ∣ 𝑥 = 𝑥, 𝑠 = 1) be the posterior
probability of a sample 𝑥 predicted by a model after resampling. The objective of score
calibration is to find the real posterior probability 𝑃(𝑦 = 1 ∣ 𝑥 = 𝑥). The calibration
formula is

𝑃(𝑦 = 1 ∣ 𝑥 = 𝑥) = 𝜇 ̃𝑆(𝑥)
𝜇 ̃𝑆(𝑥) − ̃𝑆(𝑥) + 1 (6.115)

where 𝜇 = 𝑃(𝑠 = 1 ∣ 𝑦 = 0) is the probability of selecting a negative sample during
resampling. In practice, we compute it using the identity

𝜇 = 𝑃(𝑦 = 0 ∣ 𝑠 = 1)𝑃(𝑦 = 1)
𝑃(𝑦 = 1 ∣ 𝑠 = 1)𝑃(𝑦 = 0) . (6.116)

In our case, the scores ̃𝑆0(𝑥) and ̃𝑆1(𝑥) predicted by the uplift model are calibrated
separately using samples from the control and target groups.

To avoid overfitting a given train-test split and to reduce the impact of sampling
error, we use a k-fold cross-validation scheme with 𝑘 = 3, and this scheme is repeated
10 times. This results in a total of 10 predictions by 10 different models for each data
sample. The different predictions for each sample are averaged before computing the
bounds and point estimators.

6.6.2 Estimated counterfactual probabilities

The estimated distribution of counterfactuals is reported in Fig. 6.7 and Table 6.5. In
Fig. 6.7, we report the point estimates and the bounds on all four counterfactuals. As
in Section 6.5.3, we use the midpoint of the uplift bounds as a baseline point estimate.
The point estimates of GBB and NGBB are not shown in Fig. 6.7 because they are on the
same position as the point estimate of NBB. The bounds are reported as diagonal lines
to highlight the interdependence between the counterfactuals; if, for example, 𝛼 takes
its maximum value according to the uplift bounds, then 𝛽 takes its minimum value,
and similarly for 𝛾 and 𝛿 . Therefore, the set of possible counterfactual probabilities
according to some bounds forms two diagonal lines in Fig. 6.7.

We observe that the uplift bounds are tighter than the Fréchet bounds, although
not by a large margin. Also, point estimates based on bivariate beta distributions have
similar values and they all predict smaller values for 𝛽 and 𝛾 than the independence
estimator and the uplift bounds midpoint. This indicates that they predict a lower
number of persuadable or do-not-disturb customers, which corresponds to a smaller
causal effect of the campaign, either positive or negative.

We show the probability density function (pdf) of the distributions fitted by BB and
GBB in Fig. 6.8. We can see that the pdf of GBB is less symmetrical than that of BB,
highlighting its greater flexibility which allows it to fit more complex patterns in the
data. We computed the log-likelihood of the dataset from both models, obtaining 74185
for BB and 73745 for GBB, which seems to contradict the intuition that GBB fits better
the data. However, we repeated the learning process several times using randomized
initial parameters, resulting in a more thorough exploration of the parameter space.
While BB systematically converged to the same parameter values, GBB converged to
different parameter values, resulting in a better log-likelihood than BB in approximately
75% of the cases. The best log-likelihood that we obtained with this process is 75472.

The proportion of persuadable customers is estimated by BB as ̂𝛽 = 1.7%, with a
lower uplift bound of 0.70% and an upper uplift bound of 3.64%. This amounts to 203 cus-
tomers, bounded between 84 and 433. This indicates that a maximum of 433 customers
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Figure 6.7 Point estimate and bounds on 𝛼, … , 𝛿 on the Churn 2 dataset. We display
the four axes in two separate plots, which can be arranged in a single square thanks to
the geometry of the simplex. Pay attention to the fact that the coordinate systems are
different in the two triangles. In particular, note the different vertical axis for 𝛼 . The
point estimates of GBB and NGBB are not shown as they are almost equal to that of
NBB.

Table 6.5 Point estimates and bounds on 𝛼, … , 𝛿 on the Churn 2 dataset.

𝛼 (%) 𝛽 (%) 𝛾 (%) 𝛿 (%)

Fréchet bounds 93.00 – 96.36 0.27 – 3.64 0.00 – 3.37 0.00 – 3.37
Uplift bounds 93.00 – 95.93 0.70 – 3.64 0.43 – 3.37 0.00 – 2.94
Independence 93.13 3.50 3.23 0.13
Midpoint 94.46 2.17 1.90 1.47
BB 94.93 1.70 1.43 1.94
NBB 95.25 1.38 1.11 2.26
GBB 95.23 1.41 1.13 2.23
NGBB 95.23 1.40 1.13 2.24

Figure 6.8 Probability density distribution fitted by BB and GBB on the Churn 2
dataset. Notice the asymmetry in the pdf of GBB, which more closely fits the data.
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Figure 6.9 Point estimates and uplift bounds on 𝛽 , for each month of the campaign.
The estimations by GBB and NGBB are not shown for clarity as they overlap that of BB
and NBB.

should have been called during the 3 campaigns, while in practice 9010 customers have
been called. We applied the same methodology separately for each month instead of
on the whole dataset at once, and the results are reported in Fig. 6.9. We observe a
decrease in the overall efficacy of the campaign (this is confirmed by measuring the
campaign uplift over the three months, which is not shown for confidentiality reasons),
although the bivariate beta estimators seem to detect an increasing number of persuad-
able customers. This indicates that campaigners targeted more and more customers
without being able to find persuadable customers, leading to a decrease in uplift. As
in the previous results, the independence estimator is close to the upper uplift bound.
This is because both ̂𝑆0(𝑥) and ̂𝑆1(𝑥) tend to be close to zero, and ̂𝛽(𝑥) is estimated as
̂𝑆0(𝑥)(1 − ̂𝑆1(𝑥)) in Eq. (6.49). Therefore, ̂𝛽(𝑥) is typically close to ̂𝑆0(𝑥), and the upper

bound min { ̂𝑆0(𝑥), 1 − ̂𝑆1(𝑥)} from Eq. (6.25) is often equal to ̂𝑆0(𝑥).

6.6.3 Customer profiles with counterfactual estimation

Counterfactual probabilities provide a description of customer behavior in terms of
their potential responses to retention efforts, but can also be used to establish a business
profile of the different types of customers. In this section, we assign to each existing
customer one of the four labels (sure thing, lost cause, do-not-disturb, or persuadable),
then we analyze the distribution of customer characteristics within these groups. This
approach allows for a better understanding of the customer base, the identification of
patterns and trends, and enables businesses to optimize marketing efforts and person-
alize communication strategies.

We apply the counterfactual estimator based on the bivariate beta distribution (BB
in Section 6.4) on the Churn 2 dataset to estimate both the population-level counterfac-
tuals 𝛼, 𝛽, 𝛾 , 𝛿 and the individual-level counterfactuals 𝛼(𝑥(𝑖)), 𝛽(𝑥(𝑖)), 𝛾 (𝑥(𝑖)), 𝛿(𝑥(𝑖)) for
𝑖 = 1, … , 𝑁 , where 𝑁 is the number of customers and 𝑥(𝑖) represents the features of the
client at index 𝑖 in the dataset. Since we expect to have 𝛼𝑁 sure thing customers, we
assign the label sure thing to the 𝛼𝑁 customers with the highest probability 𝛼(𝑥(𝑖)). The
same process is repeated for the persuadable, do-not-disturb and lost cause customers.
Note that this strategy does not result in a partition of the 𝑁 customers, since it is pos-
sible for a customer to have two or three labels simultaneously. Our objective here is
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Figure 6.10 Probability density function of the out-of-bundle amount (the supplement
paid by the customer for services not included in their standard allowances). We see
that persuadable customers (dotted red line) have a higher out-of-bundle than sure thing
customers, but lower than the two other classes, which are more likely to churn.

to establish a customer profile of each category rather than to find an exact partition,
therefore, we do not consider this issue to be critical.

We report the distribution of three different features for each customer category in
Figs. 6.10 to 6.12. We report an estimation of the probability density function using a
Gaussian kernel, which gives a clearer presentation than histograms. We hide the scale
of the feature distribution for confidentiality reasons.

Fig. 6.10 reports the distribution of the out-of-bundle amount, that is, the additional
fee charged to customers for services not covered in their standard allowances. This
out-of-bundle amount is sometimes unexpected for customers and is understood by
business experts to be an important driver of customer churn, a phenomenon called bill
shock, presented in Section 1.3. We see, as expected, that sure thing customers, who do
not churn regardless of the campaign call, have the lowest out-of-bundle. The pattern of
the distribution for the three other categories is interesting; the average out-of-bundle
amount is increasing across the persuadable, lost cause and do-not-disturb customers.
This indicates that if the extra fee is reasonable, a customer can be convinced to stay,
but beyond a certain threshold, retention efforts have the opposite effect. The fact that
do-not-disturb are the highest spenders can possibly be understood with the graph in
Fig. 6.11. We see that do-not-disturb customers are markedly younger than the rest of
the customer base. This can indicate that young customers tend to be not receptive to
marketing calls, and to have a higher out-of-bundle amount.

In Fig. 6.12, we report the tenure, which refers to the length of time that a customer
has been associated with the company. We see that new customers are much more
likely to be do-not-disturb, while long-term customers are most likely sure thing. As in
the previous graphs, persuadable customer lies between the two extremes.

This analysis shows the potential of counterfactual probabilities to unveil important
business insights which cannot be inferred using only the probability of churn or the
uplift. For example, in Fig. 6.10, sure thing and lost cause customers display a distinctive
behavior, while amodel based on uplift alonewould not differentiate them because both
categories have an uplift close to zero. Similarly, in this same figure, a classical churn
model that ranks individuals according to their probability of churn 𝑆0(𝑥) = 𝑃(𝑦0 = 1 ∣
𝑥 = 𝑥)would put the sure thing and do-not-disturb customers in the same class because
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Figure 6.11 Probability density function of the age for do-not-disturb customers. We
observe that younger customers are more likely to react negatively to the campaign
call.
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Figure 6.12 Probability density function of the tenure, that is, the duration the cus-
tomer has been with the company. We observe that new customers are more likely
to be negatively impacted by the campaign call (higher probability of being a do-not-
disturb), and that sure thing customers have a higher tenure.

they both have a low score 𝑆0(𝑥), although they have very different characteristics.

6.6.4 Profit analysis

In this section, we perform a simplistic profit analysis based on the estimation of coun-
terfactual probabilities reported in Section 6.6.2. Let us suppose that each call has a
cost 𝐶 = 0.25€, and that the average customer lifetime value is 𝑉 = 120€ (a customer
pays on average 20€ per month and stays 6 months). The benefit due to the campaign
as it actually happened can be computed as

Profit = 𝑁𝑈𝑉 − 𝑁𝐶 (6.117)

Where 𝑁 is the number of contacted customers and 𝑈 = 𝑆0 − 𝑆1 is the campaign uplift
(approximately 0.3% in our case). The term 𝑁𝑈𝑉 is the benefit generated by converting
customers. The benefit of calling do-not-disturb customers cancels out the benefit of
calling persuadable customers, since 𝑈 = 𝛽 − 𝛾 .5 The term 𝑁𝐶 in Eq. (6.117) is the

5This can be shown by decomposing 𝑈 = 𝑃(𝑦 0 = 1) − 𝑃(𝑦 1 = 1) in terms of 𝛽, 𝛾 and 𝛿 .
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cost of calling 𝑁 customers. To use the notation of Section 5.2.1, this corresponds to a
cost-benefit matrix

CB = [0 −𝐶
𝑉 𝑉 − 𝐶] = [

𝑡 = 0 𝑡 = 1
0 −0.25 𝑦 = 0

120 119.75 𝑦 = 1]

By evaluating Eq. (6.117) on the Churn 2 dataset, we find that the campaign incurred a
profit of €724. However, if we suppose thatwewere able to call only the 271 persuadable
customers, the potential profit would be

Potential profit = 𝑁𝛽(𝑉 − 𝐶) (6.118)

where 𝑁𝛽 is the number of contacted customers in this ideal campaign, and 𝑉 −𝐶 is the
profit generated by convincing them to stay, minus the cost of the call. For the Churn
2 dataset, this results in a profit of up to 32479€. Note that this is a simplistic way to
evaluate the profit generated by a campaign. For more detailed formulas of the profit
of a campaign, we refer the reader to Section 5.2.2.

6.7 Discussion

In this section, we discuss some of the potential shortcomings of our estimators and
experimental results.

The improvement of the uplift bounds with respect to the Fréchet bounds is di-
rectly related to the quantity of information between the features and the outcome (see
Theorem 6.1). The small improvement observed in practical applications, as shown in
Fig. 6.7, indicates that the uplift terms, and in turn counterfactual probabilities, are diffi-
cult to accurately estimate in real-world settings such as customer churn prediction. A
possible solution would be to add more informative features or design a more powerful
uplift model. The uplift bounds can also be further refined when observational data
is available (i.e., data where the treatment assignment is not randomized), as demon-
strated in (Mueller and Pearl, 2022). The results of this chapter provide nonetheless
valuable insights for Orange Belgium on the potential value of past retention campaigns
and on the distribution of the different customer categories.

The four models based on the bivariate beta distribution, presented in Section 6.4,
perform much better in terms of population-level counterfactual probabilities than the
model based on the conditional independence assumption of Section 6.3 or themidpoint
of the uplift bounds. These four models have varying degrees of complexity, which
allows practitioners to choose the most appropriate model in the context of application.
The two models which incorporate the variance of the uplift scores estimator, NBB
and NGBB, suffer from a much larger computation time when computing individual
counterfactuals. This can limit its applicability in practical scenarios involving large
datasets.

All of our estimators are influenced by the choice of the underlying uplift model.
The uplift model should be unbiased, and the quality of the estimator depends on the
quality of the uplift model. Since the two uplift terms 𝑆0(𝑥) and 𝑆1(𝑥) are used inde-
pendently in our estimators, we are also limited to uplift estimators that can provide
an estimation of these two terms separately.

The results of this chapter do not indicate which customers should be targeted to
maximize the profit from the retention campaign. This is the objective of uplift mod-
eling, as discussed in Chapter 5, in which we examined whether uplift modeling is
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always the best approach for causal decision-making. We showed that uplift models
are suboptimal under some circumstances and that proxy targets such as the probabil-
ity of the outcome are sometimes more effective for accurate causal decision-making.
A. Li and Pearl (2019) consider the case where each of the four categories of customers
(persuadable, sure thing, lost cause and do-not-disturb, see Table 6.1) have arbitrary asso-
ciated costs. In this case, counterfactual identification is essential for accurate decision-
making. Although we have not explored this area of research, we nonetheless believe
that counterfactual identification brings about very valuable insights, even when coun-
terfactual probabilities are not used directly for decision-making. This is shown in
Section 6.6.3, where we established a basic profile of the different types of customers
depending on their inferred counterfactual outcomes.

6.8 Conclusion

In this chapter, we have derived and empirically assessed new bounds and point esti-
mators on the probability of counterfactuals for binary outcomes under the assumption
of unconfoundedness based on the scores predicted by an uplift model.

The proposed uplift bounds improve upon the classical Fréchet bounds by leverag-
ing the scores estimated by an uplift model. We have demonstrated theoretically that
the bounds improve as the quality of the uplift estimation increases. Simulated exam-
ples indicate that the uplift bounds typically provide a significant improvement over
the Fréchet bounds, without requiring any new assumption. This differs from most of
the literature on partial counterfactual identification (reviewed in Section 3.2.3), where
new results are typically based on specific assumptions on the causal graph.

We have derived a point estimator assuming the conditional independence between
the potential outcomes 𝑦0 and 𝑦1 given 𝑥 . The bias of this estimator is theoretically
quantified in Theorem 6.2, and simulated examples demonstrate that the estimator is
still close to the true value even when the conditional independence assumption is not
satisfied.

We have derived four different point estimators by fitting a bivariate beta distri-
bution on the uplift scores, and using the internal representation of the distribution
as an estimator of counterfactual probabilities. In particular, population-level counter-
factuals are derived from the moments of the fitted distribution, and individual-level
counterfactuals are estimated as an expected value conditioned on the observed uplift
scores. The four different point estimators are variations of the same basic approach,
either incorporating the variance of the uplift terms in the model, or providing a more
flexible distribution by increasing the number of parameters. These four models have
similar performances in our experiments and largely outperform the other approaches.
We recommend that practitioners use BB (Section 6.4.1) or GBB (Section 6.4.4), given
their good performance and reasonable computation times compared to the other two
variations, NBB and NGBB.

Finally, an evaluation of our counterfactual estimators on customer data from Or-
ange Belgium reveals their potential for discovering interesting patterns of customer
behavior. In particular, we found that the behavior of persuadable customers lies be-
tween that of sure thing customers and do-not-disturb customers, in terms of tenure
and out-of-bundle amount. A simplistic profit analysis also revealed the very large in-
crease in benefit induced by a campaign that would target only persuadable customers.
While our approach to customer segmentation based on counterfactual estimation is
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more complex and theoretically sophisticated compared to traditional methods rely-
ing solely on customer features, this complexity is indispensable for uncovering highly
practical insights into customer behavior linked with counterfactual categories.
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Part III

Conclusion

The more you know, the less you don’t know
Unless what you know is not true

Icelandic proverb
@greipjokes on Instragram
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7
Conclusions and future work

Customer churn remains an important concern for large corporations, particularly
within the telecommunications sector. Customer retention campaigns are typically
conducted to maintain customer loyalty. However, the effectiveness of these efforts is
often hindered by the difficulty of precisely identifying and targeting customers based
on their historical profiles. The complexity of consumer behavior requires a more nu-
anced and sophisticated approach.

Uplift modeling, an approach within the field of causal analysis, emerges as an im-
portant solution to this issue. Unlike traditional predictive approaches that focus on
identifying customers likely to churn, uplift modeling takes into account the causal
aspect of customer behavior. It not only predicts the likelihood that a customer will
churn but also whether the customer will be positively influenced by targeted retention
strategies. The growing adoption of uplift modeling in both industry and academia sug-
gests its potential to improve customer retention strategies. As businesses increasingly
recognize the limitations of conventional predictive models, there is a growing interest
in methodologies that go beyondmere prediction to understand the causal mechanisms
at play.

Despite its increasing prominence, the added value of uplift modeling compared to
the traditional predictive approach has rarely been quantified in the existing literature.
The assessment of its added value is essential for companies to optimize their customer
retention efforts, and for academia to obtain a more nuanced view on modern causal
modeling techniques. Evaluating the performance of uplift modeling performance in
real-world scenarios, benchmarking it against traditional predictivemodels, and quanti-
fying its impact on customer retention campaigns are critical steps towards unlocking
its full potential and understanding its place in the broader landscape of data-driven
decision-making.

7.1 Summary of the contributions

Our research started with an empirical comparison of predictive and uplift modeling.
In Section 4.2 we performed a first benchmark of the two approaches on four different
datasets, two from our industrial partner Orange Belgium and two publicly available
uplift datasets. Although other uplift modeling benchmarks have been published in the
literature, very few of them include the predictive approach as a baseline. It appeared
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evident from our results that the predictive approach performs as well, if not better,
than all other uplift models in three of the four datasets. To confirm this result, in Sec-
tion 4.3 we compared the performance of both approaches in a series of real customer
retention campaigns with a carefully designed experimental protocol. We observed
that for all but one month, the uplift model did not outperform the predictive model.
Finally, in Section 4.4, we propose a series of new strategies to improve the performance
of uplift modeling by integrating information about whether a customer is likely to be
reached during the phone campaign (that is, whether they pick up the phone and dis-
cuss with the agent). The most efficient strategy improves the performance of an uplift
model beyond that of predictive modeling and is applicable to other settings as well.
However, its scope is limited to applications where the reach information is available.

In Chapter 5 we provided a theoretical examination of uplift modeling with a dual
focus. Firstly, in Section 5.2, we determined the optimal performance measure that is
most aligned with the objective of organizations dealing with customer churn. We de-
veloped from the first principles a profit measure that can be adjusted to any scenario
and encodes the potential losses and benefits associated with each outcome for each
customer. We showed the equivalence of this measure with another profit measure
recently proposed in the literature and with the well-known uplift curve. In particular,
the equivalence with the uplift curve is conditioned on a particular assumption that we
call the unitary cost assumption. Expressing the assumption underlying our methods
is an essential aspect of the scientific method, and, as such, this formulation is an im-
portant contribution to the uplift literature. Secondly, we conducted a comparison of
the strengths and weaknesses of the predictive and uplift approaches in terms of the
profit measure in Section 5.3. We used simulated examples to compare the performance
of both approaches in various settings. We showed the important role of the estima-
tor variance and the mutual information between the input features and the potential
outcomes. The distribution of the potential outcomes and the cost-benefit matrix also
play a major role in this problem. This generalizes other results in the literature that
compare uplift and predictive modeling.

In Chapter 6, we investigated the inference of the probability of counterfactual ex-
pressions. Counterfactual expressions are of particular interest in churn mitigation, as
they represent the four categories of customers that can be delineated according to their
reaction to retention efforts (persuadable, do-not-disturb, etc.). Estimating counterfac-
tuals allows one to understand more precisely the performance of past campaigns and
to establish a business profile of customers who react positively, negatively, or neu-
trally to the campaign. Counterfactual probabilities cannot be inferred exactly from
data, but we proposed bounds and point estimators that improve upon the state of the
art. The uplift bounds, based on the predictions of an uplift model, perform better as
the customer features are more informative about the outcome. We proposed different
point estimators of counterfactual probabilities, either by assuming the conditional in-
dependence between the potential outcomes, or by fitting a bivariate beta distribution
on the uplift terms. Several variations of the latter approach are provided to allow for
more flexibility at the expense of computation time. In Section 6.5, simulated exam-
ples showed the improvement of the uplift bounds over the state of the art, and the
superiority of the point estimators based on the bivariate beta distribution. We applied
these methods to data from our industrial partner in Section 6.6. We analyzed the typi-
cal behavior patterns of persuadable, lost cause, sure thing and do-not-disturb customers,
which revealed insights unavailable using predictive or uplift modeling alone. In partic-
ular, we observed that the behavior of persuadable customers is between two extremes:
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sure thing customers with low service usage, low bill, and long tenure, and the do-not-
disturb customers, who are comparatively younger, churn more often, and have higher
bills.

7.2 Recommendations for practitioners

We can summarize our findings in a series of recommendations for data scientists who
plan to use uplift modeling on a problem with binary outcome and binary treatment.
Before even choosing the features or the uplift model, we can give the following rules:

• If the potential outcome 𝑦1 is balanced but 𝑦0 is not, the uplift approach is more
effective.

• On the contrary, if the potential outcome 𝑦0 is balanced but 𝑦1 is not, the predic-
tive approach is more effective.

If neither of the two conditions above applies (such as when both outcomes are un-
balanced, which is often the case for customer churn), the quality of the descriptive
features must be assessed. We can summarize our findings with respect to the descrip-
tive features as follows:

• If we have access to an indicator of which customers were reached in past cam-
paigns or, more generally, an indicator of receptivity or compliance to the inter-
vention, the estimated probability distribution of this indicator should be added
as a feature.

• If the features are still not informative about the potential outcomes, the predic-
tive approach is likely to be more effective.

When the features are reasonably informative, we recommend to perform an empirical
comparison of both approaches with the available data. At this stage, it is important
to take into account the costs and benefits associated with each outcome and each
individual, as it can greatly influence the results. The profit measure can be used as
a metric to compare different models while taking into account individual costs and
benefits. The variance of the models is the last important factor that will influence the
outcome of this comparison.

Lastly, deeper insights can be obtained on the problem at hand by estimating the
distribution of counterfactuals. We recommend using the model based on the gener-
alized bivariate beta distribution (GBB), as it is more flexible than the other proposed
approaches for the same computational cost. If the uplift model suffers from a high vari-
ance, it may be beneficial to take this variability into account with the model named
NGBB, although it is more computationally intensive. With the estimated distribu-
tion of counterfactuals, the practitioner can examine the distribution of other features
within each counterfactual category and analyze the performance of the campaign in
terms of positive and negative effects. The implementation of these methods can be
challenging because of the complexity of the learning and inference process described
in Section 6.4. This complexity is due to the fact that counterfactual events cannot be
observed directly, requiring more sophisticated methods of inference.
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7.3 Added value for the company

In this section, we discuss how the outcome of this research project can be valorized
by Orange Belgium.

• Until now, Orange has not explored the use of upliftmodeling. While the primary
focus of this thesis has been to address customer churn, Orange Belgium conducts
several other campaigns in various domains, such as up-sell (proposing a more
expensive tariff plan), or cross-sell (proposing additional products). The poten-
tial applicability of uplift modeling extends beyond churn management, which
presents an opportunity for Orange Belgium to enhance the effectiveness of these
other campaigns. Our theoretical analysis of uplift modeling in Chapter 5, sum-
marized as a set of guidelines in Section 7.2, provides a valuable framework for
Orange Belgium to discern situations in which uplift modeling can prove benefi-
cial. By incorporating uplift modeling into their repertoire, Orange Belgium can
optimize resource allocation, target the right audience, and ultimately improve
the overall impact of diverse campaigns.

• Due to its simple and generic nature, the reach as a feature methodology, devel-
oped in Section 4.4, can potentially improve the performance of any other model
trained from customer data at Orange Belgium. This is probably the contribution
of this thesis that has the widest scope of application for our industrial partner.
This methodology can be further developed by considering the probability of
reach through different channels, such as email, phone call, SMS, etc. Further-
more, a given customer does not need to have been contacted through each of
these channels in order to implement the methodology, thanks to the generaliza-
tion abilities of the underlying machine learning model.

• Estimating counterfactual probabilities provides a more complete description of
the causal impact of retention efforts on customer churn. This estimation can
be coupled with an analysis of customer features, which can reveal important
insights for Orange Belgium’s business operations. For example, we can establish
a profile of the typical persuadable customer, and subsequent campaigns can be
adjusted to take this new information into account.

7.4 Open issues and future work

This thesis represents an important contribution to the field of causal analysis applied
to customer management. We have provided a detailed theoretical analysis of uplift
modeling, both in terms of potential benefits (with the profit measure developed in
Section 5.2) and compared to the classical predictive approach. To obtain general re-
sults, our analysis was based on a model-agnostic definition of the uplift approach and
the predictive approach. This also implies that, in practice, the performance of both ap-
proaches can vary slightly depending on the specific model used. More specific results
can be obtained by performing a detailed analysis of the different implementations of
uplift modeling described in Section 3.1.2.

Our approach to counterfactual probability estimation is quite different from the
rest of the literature on causal inference. We naturally built our inference strategies
from an uplift model to obtain individual-level predictions, while in the causal infer-
ence literature, estimators are often based only on structural assumptions on the causal
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graph (Mueller, A. Li, and Pearl, 2021; J. Zhang, Tian, and Bareinboim, 2022). Our ap-
proach based on uplift modeling opens the way for many other approaches to counter-
factual inference. In the latter stages of research, we discovered the potential applica-
tion of more advanced techniques:

• Copulas provide a way to encode the joint distribution of two random variables
(Geenens, 2020). This can provide new possibilities to encode the dependency
between the potential outcomes, while our estimators in Chapter 6 assume that
the outcomes are conditionally independent or follow a given bivariate beta dis-
tribution.

• The expectation-maximization (EM) algorithm is an iterative procedure to find
the distribution that best fits the data (M. Ding, 2022). Our approaches infer
the distribution of counterfactuals in a single step from the data. Adapting the
EM algorithm to the task of counterfactual inference can potentially refine and
improve our results.

• Stein discrepancy is an approach to measure the discrepancy between data and a
distribution (Barp et al., 2019). Stein discrepancy estimators can be used to tune
the parameters of a distribution with potentially better results than the optimiza-
tion procedure we used in Section 6.4. This field of research leans more heavily
on advanced probability theory; therefore, whether this approach is applicable
to the task of counterfactual inference is yet to be determined.

Lastly, we should stress that the results presented in this thesis pertain to a much
broader scope than customer churn. Any task involving a binary action, a binary out-
come, and descriptive features can benefit from our results. We hope that our contribu-
tions will extend beyond the domain of business analytics, serving as a small building
block to address some of today’s challenges, such as climate change, social equality,
medicine, and other important tasks that can benefit from the new capabilities of causal
inference and machine learning.
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A
Introduction to probability theory

In this appendix, we give an introduction to the basic concepts of probability theory
that are used throughout this thesis. This presentation is based on the handbook for
the course Statistical foundations of machine learning by Bontempi (2017). Probability
theory was synthesized in its current form by Kolmogoroff (1933). A formal definition
requires notions of measure theory; however, a significant number of the technical
details of such a formal definition are not relevant to this work, and therefore, we will
strategically omit them. See (Durrett, 2019) for a more complete introduction, or (Barbe
et al., 2007) in French.

A.1 Modeling uncertainty

The concept of random experiment is at the core of probability theory. It is a process that
is possibly repeatable and whose output is uncertain; that is, the output of this process
can be any one of multiple alternatives. The classic example of a repeatable random
experiment is to throw a dice. An example of a non-repeatable random experiment
would be the life expectancy of the King of Belgium. The result of both processes
cannot be determined with certainty in the current state of our knowledge.

The set of possible outcomes for a particular random experiment is called the sample
space, denoted Ω. In the case of the dice experiment, we would have Ω = {1, 2, 3, 4, 5, 6}.
In the example of life expectancy,Ωwould be the set of positive real numbersℝ+, which
could reasonably be reduced to positive real numbers between the King’s current age
and 130. This last example shows that the choice of the sample space is the result of
a modeling process, and therefore different sample spaces could be suited to a given
setting.

We denote a particular outcome, also called a realization, as 𝜔. A single run of the
random experiment is called a trial. Generally, we are not interested in whether an
individual realization occurs. In the life expectancy example, it does not make sense to
ask whether the life expectancy would be exactly 80 years, 0 day, 0 minute, 0 second,
etc. We are more interested in modeling the probability that the outcome falls in a
subset of the sample space, for example between 80 and 85 years.

To formalize this idea, we call any subset 𝐸 of Ω an event. The set of events that we
are interested in is called the event space, notedℱ . Therefore,ℱ is a set of subsets ofΩ.
Furthermore, we requireℱ to fulfill the definition of a 𝜎-algebra, that is, it must satisfy
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the following three properties. These rules are essential to ensure the mathematical
consistency of probabilities.

• The sample space Ω is in ℱ ,

• ℱ is closed under complements: for all events 𝐸 ∈ ℱ , its complement Ω ⧵ 𝐸 is
also in ℱ ,

• ℱ is closed under countable unions: for a sequence of events 𝐸1, 𝐸2, … , their
union ⋃∞

𝑖=1 𝐸𝑖 is also in ℱ .

Finally, the last element necessary to formalize the notion of uncertainty is to quan-
tify the probability of occurrence of events in the event space ℱ . This is achieved by
defining a probability measure, noted 𝑃 , as a function that returns a number in [0, 1]
for each event 𝐸 ∈ ℱ . More precisely, this function must satisfy the three axioms of
probability.

1. The probability of an event 𝐸 ∈ ℱ is positive: 𝑃(𝐸) ≥ 0,
2. The probability of the sample space is one: 𝑃(Ω) = 1 (i.e., the probability that

any outcome occurs is one),

3. The probability measure is additive under countable unions: for all sequences
𝐸1, 𝐸2, … of mutually exclusive events (i.e., such that 𝐸𝑖 ∩ 𝐸𝑗 = ∅ for all pairs of
distinct nonnegative integers 𝑖, 𝑗), we have

𝑃 (
∞
⋃
𝑖=1

𝐸𝑖) =
∞
∑
𝑖=1

𝑃(𝐸𝑖).

This list of requirements should not be understood as truth corresponding to the real
nature of uncertainty, but rather as definitions that provide mathematical convenience
and that seem to correspond to our human intuition of probability.

When considered together, the three mathematical objects defined above, the sam-
ple space Ω, the event space ℱ and the probability measure 𝑃 , are called a probability
space, noted (Ω,ℱ , 𝑃).

A.2 Random variables

It is often impractical to write a probabilistic expression in terms of elements of the
event space ℱ , especially when Ω is continuous and multidimensional, or even more
so when it contains more complex objects such as functions. The concept of random
variable allows one to concisely and intuitively express complex probabilistic expres-
sions. In the following, we will use the example of a random experiment where we
throw two random dice, as a way to give a concrete expression of these quite abstract
definitions. In this example, the space of outcomes Ω is the set {(1, 1), (1, 2), … , (6, 6)}.

Formally, a random variable is defined as a function 𝑥 (note the bold font) from the
outcome space Ω to a set 𝒳 . This set is called the domain of 𝑥 . We note a realization
of 𝑥 , that is, a member of 𝒳 , as 𝑥 (note the regular font). In the two dice example, a
random variable representing the sum of the two dice is defined as 𝑥((𝑑1, 𝑑2)) = 𝑑1+𝑑2,
and its domain is {2, … , 12}.
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Furthermore, for each subset 𝐼 of 𝒳 , we define the inverse function 𝑥−1 as

𝑥−1(𝐼 ) = {𝜔 ∈ Ω ∣ 𝑥(𝜔) ∈ 𝐼 }. (A.1)

Intuitively, 𝑥−1(𝐼 ) is the set of outcomes in Ω that lead the random variable 𝑥 to take a
value in 𝐼 . In our example, 𝑥−1 is defined as 𝑥−1(𝑠) = {(𝑑1, 𝑑2) ∈ Ω ∣ 𝑑1 + 𝑑2 = 𝑠}.

This definition can be combined with the probability measure 𝑃 to compute the
probability of the random variable 𝑥 to be realized in a given subset 𝐼 of𝒳 . The function
that goes from 𝐼 to a probability is called push-forward measure. In this work, the
distinction between this push-forward measure and the original probability measure 𝑃
is not important; hence we will note it 𝑃 as well. From this, we can write

𝑃(𝑥 ∈ 𝐼 ) = 𝑃(𝑥−1(𝐼 )) = 𝑃({𝜔 ∈ Ω ∣ 𝑥(𝜔) ∈ 𝐼 }). (A.2)

In our example, the probability that the sum of the dice is greater than 10 is written as
𝑃(𝑥 ∈ {11, 12}) = 𝑃({(4, 6), (5, 5), (6, 4), (5, 6), (6, 5)). Technically, the domain 𝒳 must
be accompanied by its own 𝜎-algebra, 𝐼 must be a measurable set, and 𝑥 must be a
measurable function, but these properties are not important in this work; therefore, we
avoid defining them for simplicity.

We can also intuitively understand the notion of a random variable as a formaliza-
tion of experimental measurement: the outcome space Ω represents the state of the
universe (or, at least, the part of the universe relevant to the experiment), and the
random variable 𝑥 represents a single numerical quantity that represents an aspect of
interest of the universe. For example, in a closed room filled with some gas, Ω would
represent the state of each molecule in the room (their position and momentum), and
𝑥 would be the average temperature of the room at thermal equilibrium. The random
variable 𝑥 represents the value of a temperature measurement, as a complex function
of the state of each molecule; however, it is not necessary to fully describe the set Ω
and the functional definition of 𝑥 to reason about the equilibrium temperature.

A.3 Discrete and absolutely continuous random variables

When the domain of a random variable is countable (either with a finite or infinite
number of elements), then we say that it is a discrete random variable. Examples in-
clude the dice random experiment, or the number of heads before a tail comes up when
repeatedly flipping a coin. The countable nature of the domain allows us to assign a
probability to each possible realization of the random variable.

Definition A.1 (Probability mass function). The probability mass function of a discrete
random variable 𝑥 , noted 𝑃𝑥 , is a function defined, for all 𝑥 ∈ 𝒳 , as

𝑃𝑥 (𝑥) = 𝑃(𝑥 ∈ {𝑥}).

We also use the notation 𝑃(𝑥 = 𝑥) = 𝑃𝑥 (𝑥). When it is clear from the context, we also
write 𝑃(𝑥 = 𝑥) = 𝑃(𝑥).

A random variable 𝑥 is said to be absolutely continuous if its domain is uncountable,
such as a subset of the real line. We may sometimes use the term continuous instead of
absolutely continuous. More formally, 𝑥 is absolutely continuous if it has a probability
density function, defined as follows:
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𝑃(𝑥, 𝑦) 𝑥 = 0 𝑥 = 1
𝑦 = 0 0.1 0.2
𝑦 = 1 0.3 0.4

Table A.1 Joint probability table of two binary variables.

Definition A.2 (Probability density function). Given a random variable 𝑥 with domain
𝒳 ⊆ ℝ, the probability density function (abbreviated pdf ) 𝑓𝑥 of 𝑥 is a function from 𝒳
to ℝ+ such that, for all intervals [𝑎, 𝑏] ⊆ 𝒳 , we have

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓𝑥 (𝑥) d𝑥. (A.3)

Then, we can define the cumulative distribution function of 𝑥 , noted 𝐹𝑥 , as the prob-
ability of 𝑥 being less than a given value:

Definition A.3 (Cumulative distribution function). The cumulative distribution func-
tion 𝐹𝑥 of an absolutely continuous random variable 𝑥 is defined as

𝐹𝑥 (𝑥) = ∫
𝑥

−∞
𝑓 (𝑡) d𝑡 = 𝑃(𝑥 ≤ 𝑥). (A.4)

Note that all the random variables we consider in this thesis are either discrete
or absolutely continuous, but this categorization is not exhaustive. For example, the
domain of the Cantor distribution (Hewitt and Stromberg, 2013) is the entire interval
[0, 1], however, it has no pdf satisfying Definition A.3.

A.4 Multiple random variables

In most applications, for example in machine learning, we want to model multiple ran-
dom variables at a time. In this section, we define the notions of joint probability,
conditional probability, and independence of two variables. We limit ourselves to two
variables for the sake of clarity, but these definitions can be easily extended to any
number of variables.

A.4.1 Joint probability

The probability that two random variables 𝑥 and 𝑦 take their values into two sets 𝐴
and 𝐵 is defined as the probability of the outcomes compatible simultaneously with 𝐴
and 𝐵.
Definition A.4 (Joint probability). The joint probability distribution of two random
variables 𝑥 and 𝑦 is defined, for all 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 , as

𝑃(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵) = 𝑃(𝑥−1(𝐴) ∩ 𝑦−1(𝐵)). (A.5)

In the case of discrete variables, this probability distribution is often represented
as a probability table; see, for example, Table A.1. In this example, the probability that
𝑥 = 0 and 𝑦 = 1 is 𝑃(𝑥 = 0, 𝑦 = 1) = 0.3.

In the case of two absolutely continuous random variables, the joint pdf is defined
in terms of their joint cumulative distribution function. This requires that their joint
cumulative distribution function is well-defined and is twice differentiable.
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Definition A.5 (Joint cumulative distribution function). The joint cumulative distribu-
tion function of two absolutely continuous random variables 𝑥 and 𝑦 is defined, for all
𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 , as

𝐹𝑥,𝑦 (𝑥, 𝑦) = 𝑃(𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦) = 𝑃(𝑥−1(] − ∞, 𝑥]) ∩ 𝑦−1(] − ∞, 𝑦])). (A.6)

Definition A.6 (Joint probability density function). The joint probability density func-
tion of two absolutely continuous random variables 𝑥 and 𝑦 is defined, for all 𝑥 ∈ 𝒳
and 𝑦 ∈ 𝒴 , as

𝑓𝑥,𝑦 (𝑥, 𝑦) =
𝜕2𝐹𝑥,𝑦 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦 . (A.7)

A.4.2 Conditional probability

An important aspect of scientific inquiry is the ability to update our model given new
evidence. For example, suppose that we wish to predict whether it will rain tomorrow.
Without any other information, the outcome will be quite uncertain. Then, someone
tells us that we are in Belgium in the middle of February, and that it has been raining
for the past three days. It is now reasonable to assign a much higher probability of rain
for tomorrow given this new information. This operation is formalized in probability
theory as conditional probabilities.

Definition A.7 (Conditional probability). The conditional probability distribution of a
random variable 𝑦 given that we observe 𝑥 ∈ 𝐴, such that 𝑃(𝑥 ∈ 𝐴) > 0, is defined, for
all 𝐵 ⊆ 𝒴 , as

𝑃(𝑦 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴) = 𝑃(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)
𝑃(𝑥 ∈ 𝐴) . (A.8)

Note that this definition does not cover the case where we condition on an event
of probability zero, such as the realization 𝑥 = 𝑥 for an absolutely continuous random
variable. For example, we could wish to compute the probability distribution of the
age of an individual given that we have a measure of their size. Using measure the-
ory, it is possible to give a general definition of conditional probability that takes into
account this case. However, to avoid going into technical details, we provide here a
definition of conditional probability for two absolutely continuous random variables
that is a corollary of this more general definition.

Definition A.8 (Conditional probability density function). Let 𝑥 and 𝑦 be two abso-
lutely continuous random variables with pdf 𝑓𝑥 and 𝑓𝑦 and joint pdf 𝑓𝑥,𝑦 . The condi-
tional probability density function of 𝑦 given the observation 𝑥 = 𝑥 , noted 𝑓𝑦 ∣𝑥 is defined
where 𝑓𝑥 (𝑥) > 0 as

𝑓𝑦 ∣𝑥 (𝑦) =
𝑓𝑥,𝑦 (𝑥, 𝑦)
𝑓𝑥 (𝑥)

. (A.9)

In contexts involving more than one random variable, the distribution of an individ-
ual random variable is calledmarginal distribution, in contrast to its joint or conditional
distributions with another random variable.
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A.4.3 Independence

The notion of independence formalizes the notion that two events are unrelated, that is,
observing the occurrence of one does not provide any information about the occurrence
of the other. For example, in the game of roulette, observing the outcome of a game
does not provide any information on the outcome of the next game. There exists a
definition of the independence between two events; however, we will directly focus on
the independence between two random variables.

Definition A.9 (Independence). Two random variables 𝑥 and 𝑦 are independent if, for
all 𝐴 ⊆ 𝒳 and 𝐵 ⊆ 𝒴 , we have

𝑃(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵) = 𝑃(𝑥 ∈ 𝐴)𝑃(𝑦 ∈ 𝐵). (A.10)

This is noted 𝑥 ⟂ 𝑦 . In particular, two absolutely continuous random variables 𝑥 and 𝑦
with pdf 𝑓𝑥 and 𝑓𝑦 and joint pdf 𝑓𝑥,𝑦 are independent if, for all 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴 , we
have

𝑓𝑥,𝑦 (𝑥, 𝑦) = 𝑓𝑥 (𝑥)𝑓𝑦 (𝑦). (A.11)

Combining Definitions A.7 and A.9 has the following rather intuitive consequence:
the distribution of a random variable does not change after observing another random
variable from which it is independent. This is formally expressed as

𝑃(𝑦 ∈ 𝐵 ∣ 𝑥 ∈ 𝐴) = 𝑃(𝑦 ∈ 𝐵) if 𝑥 ⟂ 𝑦. (A.12)

For absolutely continuous random variables, we also have

𝑓𝑦∣𝑥 (𝑦) = 𝑓𝑦 (𝑦) if 𝑥 ⟂ 𝑦. (A.13)

The notion of independence can be generalized to the notion of conditional inde-
pendence. Conditional independence is an essential tool used in many causal inference
algorithms, such as the PC algorithm (Spirtes, Glymour, and Review, 1991).

Definition A.10 (Conditional independence). Two random variables 𝑥 and 𝑦 are con-
ditionally independent given another random variable 𝑧 if, for all 𝐴 ⊆ 𝒳 , 𝐵 ⊆ 𝒴 , and
𝐶 ⊆ 𝒵 , we have

𝑃(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ∣ 𝑧 ∈ 𝐶) = 𝑃(𝑥 ∈ 𝐴 ∣ 𝑧 ∈ 𝐶)𝑃(𝑦 ∈ 𝐵 ∣ 𝑧 ∈ 𝐶) (A.14)

whenever 𝑃(𝑧 ∈ 𝐶) > 0. This is noted 𝑥 ⟂ 𝑦 ∣ 𝑧. In particular, two absolutely continuous
random variables 𝑥 and 𝑦 are conditionally independent given another random variable
𝑧 if, for all 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 , and 𝑧 ∈ 𝒵 , we have

𝑓𝑥,𝑦 ∣𝑧(𝑥, 𝑦) = 𝑓𝑥 ∣𝑧(𝑥)𝑓𝑦 ∣𝑧(𝑦) (A.15)

whenever 𝑓𝑧(𝑧) > 0.
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probabilities from a causal model

In this appendix, we give an example of computation of counterfactual probabilities
when we have full knowledge of the causal model. This is an extreme case of the fully
identifiable setting described in Section 3.2.2. Let 𝑀1, … ,𝑀𝑚 be a sequence of models
derived by interventions from𝑀 = (𝑃, 𝑈 , 𝑉 , 𝐺, 𝐹 ), as in Definition 2.19, possibly includ-
ing 𝑀 . We note the components of each interventional model as 𝑀𝑖 = (𝑃, 𝑈 , 𝑉 , 𝐺𝑖, 𝐹𝑖)
(the unobserved variables 𝑈 , the observed variables 𝑉 , and their probability measure
𝑃 are not modified by interventions, although the distribution of 𝑉 is). Recall that the
observed variables are noted 𝑉 = (𝑣1, … , 𝑣𝑑 ). Let 𝑦 (1), … , 𝑦 (𝑚) be a sequence of ran-
dom variables such that 𝑦 (𝑖) ∈ 𝑉 for all 𝑖 ∈ {1, … , 𝑚}. These random variables may be
identical. We note their domains 𝒴1, … ,𝒴𝑚. Let us compute the probability

𝑃(𝑦 (1)𝑀1 ∈ 𝐴1, … , 𝑦 (𝑚)
𝑀𝑚 ∈ 𝐴𝑚)

where 𝐴𝑖 ⊆ 𝒴𝑖 for all 𝑖 = 1, … , 𝑚. This can be done in a two-step process:

1. For each 𝑖 = 1, … , 𝑚, find the subset Λ𝑖 of 𝒰 that satisfies 𝑦 (𝑖)𝑀𝑖 ∈ 𝐴𝑖 in 𝑀𝑖:

Λ𝑖 = {𝑈 ∈ 𝒰 ∣ 𝑦 (𝑖)𝑀𝑖(𝑈 ) ∈ 𝐴𝑖}

This is done by solving for 𝑈 a system of equations based on the functions 𝑓1, … , 𝑓𝑑
in 𝐹𝑖:

𝑓𝑦 (𝑖)(PA𝐺𝑖(𝑦 (𝑖)), 𝑈 ) ∈ 𝐴𝑖
𝑓1(PA𝐺𝑖(𝑣1), 𝑈 ) = 𝑣1

⋮
𝑓𝑑 (PA𝐺𝑖(𝑣𝑑 ), 𝑈 ) = 𝑣𝑑

The system above contains 𝑑 equations: one for the random variable 𝑦 (𝑖) present
in the counterfactual expression 𝑦 (𝑖)𝑀𝑖 ∈ 𝐴𝑖, and 𝑑 − 1 for the remaining variables
in 𝑉 .
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2. Given the sets Λ1, … , Λ𝑚, compute the probability

𝑃(𝑦 (1)𝑀1 ∈ 𝐴1, … , 𝑦 (𝑚)
𝑀𝑚 ∈ 𝐴𝑚) = 𝑃(𝑈 ∈ Λ1 ∩ ⋯ ∩ Λ𝑚).

As an example, let 𝑥 be a discrete random variable with domain {1/4, 3/4} such that
both outcomes have an equal probability of 1/2. Let 𝑦 be a Bernoulli random variable
with parameter 𝑝 = 𝑥 . Let us compute the probability

𝑃(𝑦𝑥=1/4 = 0, 𝑦𝑥=3/4 = 1).
To compute such a counterfactual probability, we need to define the system as a causal
model following Definition 2.18, that is, with latent variables 𝑢𝑥 and 𝑢𝑦 , and write 𝑥
and 𝑦 as deterministic functions of their parents. Here is a possible way to define this
causal model:

𝑢𝑥 ∼ Bern(0.5)
𝑢𝑦 ∼ 𝑈 (0, 1)
𝑥 = 1

4(1 − 𝑢𝑥 ) + 3
4𝑢𝑥

𝑦 = 𝕀[𝑢𝑦 < 𝑥].
Here, 𝑢𝑥 and 𝑢𝑦 are independent and their joint domain is 𝒰 = {0, 1} × [0, 1]. The first
step is to determine Λ1 and Λ2, defined as

Λ1 = {(𝑢𝑥 , 𝑢𝑦 ) ∈ 𝒰 ∣ 𝑦𝑥=1/4(𝑢𝑥 , 𝑢𝑦 ) = 0}
Λ2 = {(𝑢𝑥 , 𝑢𝑦 ) ∈ 𝒰 ∣ 𝑦𝑥=3/4(𝑢𝑥 , 𝑢𝑦 ) = 1}.

Let us focus on Λ1. If 𝑥 is set to 1/4, then 𝑦 is equal to 0 whenever 𝑢𝑦 is greater than or
equal to 1/4. Also, since the value of 𝑥 is fixed, the value of 𝑢𝑥 has no influence on the
system. This is formally written

Λ1 = {0, 1} × [14 , 1] .
Similarly, when 𝑥 is set to 3/4, 𝑦 is equal to 1 whenever 𝑢𝑦 is strictly less than 3/4, implying

Λ2 = {0, 1} × [0, 34) .
The probability 𝑃(𝑦𝑥=1/4 = 0, 𝑦𝑥=3/4 = 1) is computed as

𝑃(𝑦𝑥=1/4 = 0, 𝑦𝑥=3/4 = 1) = 𝑃((𝑢𝑥 , 𝑢𝑦 ) ∈ Λ1 ∩ Λ2)
= 𝑃 ((𝑢𝑥 , 𝑢𝑦 ) ∈ {0, 1} × [14 ,

3
4)) .

By independence of 𝑢𝑥 and 𝑢𝑦 , this reduces to

𝑃(𝑦𝑥=1/4 = 0, 𝑦𝑥=3/4 = 1) = 𝑃(𝑢𝑥 ∈ {0, 1})𝑃 (1
4 ≤ 𝑢𝑦 < 3

4) = 1 × 1
2 .

We can also compute other quantities, such as, given that we observed 𝑦 = 1 and 𝑥 = 3/4,
the probability that 𝑦 would still be 1 had 𝑥 been 1/4. This is formalized as

𝑃 (𝑦𝑥=1/4 = 1 ∣ 𝑦 = 1, 𝑥 = 3
4) =

𝑃 (𝑦𝑥=1/4 = 1, 𝑦 = 1, 𝑥 = 3
4)

𝑃 (𝑦 = 1, 𝑥 = 3
4)

.
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The denominator 𝑃 (𝑦 = 1, 𝑥 = 3/4) does not involve potential outcomes and, therefore,
can be computed from the definition of 𝑥 and 𝑦 :

𝑃 (𝑦 = 1, 𝑥 = 3
4) = 𝑃 (𝑦 = 1 ∣ 𝑥 = 3

4) 𝑃 (𝑥 = 3
4)

= 𝑃 (𝑢𝑦 < 3
4) 𝑃(𝑢𝑥 = 1)

= 3
4 × 1

2 = 3
8 .

The numerator 𝑃 (𝑦𝑥=1/4 = 1, 𝑦 = 1, 𝑥 = 3/4) is computed using the general procedure
for counterfactuals, by defining

Λ3 = {(𝑢𝑥 , 𝑢𝑦 ) ∈ 𝒰 ∣ 𝑦𝑥=1/4(𝑢𝑥 , 𝑢𝑦 ) = 1}
Λ4 = {(𝑢𝑥 , 𝑢𝑦 ) ∈ 𝒰 ∣ 𝑦(𝑢𝑥 , 𝑢𝑦 ) = 1}
Λ5 = {(𝑢𝑥 , 𝑢𝑦 ) ∈ 𝒰 ∣ 𝑥(𝑢𝑥 , 𝑢𝑦 ) = 3

4 } .

Using a similar reasoning as for Λ1 and Λ2, we find

Λ3 = {0, 1} × [0, 14)
To determine Λ4, we must take into account the two possible values for 𝑢𝑥 : if it is 0,
then 𝑢𝑦 must be between 0 and 1/4, whereas if it is 1, 𝑢𝑦 must be between 0 and 3/4. This
is expressed as

Λ4 = {0} × [0, 14) ∪ {1} × [0, 34) .
For Λ5, since we are only concerned with the value of 𝑥 , the variable 𝑢𝑦 can take any
value, leading to

Λ5 = {1} × [0, 1].
The intersection of Λ3, Λ4 and Λ5 is

Λ = Λ3 ∩ Λ4 ∩ Λ5 = {1} × [0, 14) .

The counterfactual probability 𝑃 (𝑦𝑥=1/4 = 1 ∣ 𝑦 = 1, 𝑥 = 3/4) is computed as

𝑃 (𝑦𝑥=1/4 = 1 ∣ 𝑦 = 1, 𝑥 = 3
4) = 8

3𝑃 ((𝑢𝑥 , 𝑢𝑦 ) ∈ {1} × [0, 14)) .

By independence of 𝑢𝑥 and 𝑢𝑦 , we have

𝑃 (𝑦𝑥=1/4 = 1 ∣ 𝑦 = 1, 𝑥 = 3
4) = 8

3𝑃(𝑢𝑥 = 1)𝑃 (0 ≤ 𝑢𝑦 < 1
4)

= 8
3 × 1

2 × 1
4 = 1

3 .
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C
Convergence of the uplift curve to

the profit measure

In this appendix, we prove the convergence of the uplift curve to the profit measure,
formulated in Theorem 5.4:

Theorem 5.4. Let 𝐷tr be a training set of iid realizations of (𝑥, 𝑦 , 𝑡), and let 𝐷te be a
test set of 𝑁 tuples (𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖)) iid to (𝑥, 𝑦 , 𝑡), where 𝑡 is randomized (see Definition 3.2).
Let ℳ be a model such that ℳ(𝑥, 𝐷tr) is a continuous random variable. Let 𝜌 ∈ (0, 1)
be the prescription rate, and 𝑘 = ⌈𝑁𝜌⌉. Under the unitary value assumption, the value
of the uplift curve at index 𝑘, noted Uplift(𝑘, 𝐷tr, 𝐷te), converges to the causal profit of a
campaign at the corresponding prescription rate 𝜌. This is expressed formally as

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te) = Π(𝜌, 𝐷tr) in probability. (5.1)

The overall structure of this appendix is as follows. First, we adapt the definition of
the uplift curve in some technical aspects to facilitate the proof. Then, in Appendix C.1,
we state Lemma C.1, which is the key result that enables the proof of Theorem 5.4. We
then prove Theorem 5.4 assuming Lemma C.1 to be true. In Appendix C.2, we list a
series of smaller technical results needed for the proof of Lemma C.1, and we then
prove Lemma C.1. Finally, we prove these smaller technical results in Appendix C.3.

The training set 𝐷tr is not important in the proof of Theorem 5.4, therefore, in this
appendix, we note ℳ(𝑥, 𝐷tr) = ℳ(𝑥) and 𝜏 (𝐷tr) = 𝜏 . Also, in this theorem, the test
set is a random variable, noted 𝐷te, hence the uplift curve is also a random variable.
However, in the original definition of the uplift curve (Definition 3.3), the test set is
not random, and it is sorted according to the scores predicted by ℳ. We need a new
definition that takes into account the random nature of the test set and does not require
it to be sorted, such that it can represent iid samples of (𝑥, 𝑦 , 𝑡). For that, we define a
binary random vector 𝐵(𝑘) of length 𝑁 that indicates which are the 𝑘 samples from the
test set with the highest scores according to ℳ. Since the fact that 𝐵(𝑘) depends on 𝑘
is not essential in our developments, we note 𝐵 = 𝐵(𝑘).
Definition C.1 (Uplift curve). Let 𝐷te = {(𝑥(𝑖), 𝑦 (𝑖), 𝑡(𝑖))}𝑁𝑖=1 be a data set of 𝑁 iid tuples
of random variables, such that the treatment 𝑡(𝑖) is randomized. Let ℳ be a model, and
let 𝑘 ∈ {1, … , 𝑁 }. Let 𝐵 = 𝐵(𝑘) be a binary random vector indicating the 𝑘 individuals
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C. Convergence of the uplift curve to the profit measure

with the highest scores according to ℳ. Formally, 𝐵 is defined as a binary random
vector [𝑏(𝑖)]𝑁𝑖=1 of length 𝑁 such that ∑𝑁

𝑖=1 𝑏(𝑖) = 𝑘 and ℳ(𝑥(𝑖)) ≥ ℳ(𝑥(𝑗)) whenever
𝑏(𝑖) = 1 and 𝑏(𝑗) = 0. The uplift curve is defined as

Uplift(𝑘, 𝐷te) = ( 𝑟0(𝑘)𝑛0(𝑘)
− 𝑟1(𝑘)

𝑛1(𝑘)
) 𝑘 (C.2)

where the following notation is used, for 𝑡 = 0, 1:

𝑟 𝑡(𝑘) =
𝑁
∑
𝑖=1

𝑏(𝑖)𝕀[𝑦 (𝑖) and 𝑡(𝑖) = 𝑡] 𝑛𝑡(𝑘) =
𝑁
∑
𝑖=1

𝑏(𝑖)𝕀[𝑡(𝑖) = 𝑡] (C.3)

In the case 𝑟 𝑡(𝑘) = 𝑛𝑡(𝑘) = 0, the quotient 𝑟 𝑡(𝑘)/𝑛𝑡(𝑘) is defined as 0.
Given an unsorted realization of 𝐷te, we can always sort it by score and compute

the uplift curve as in the original definition (Definition 3.3), and result will always be
identical to the uplift curve computed from this realization of 𝐷te with Definition C.1.

C.1 Convergence of the uplift curve

The key to the proof of Theorem 5.4 is the following lemma, which probably represents
the intuition underlying the definition of the uplift curve. It links the probabilities that
we intend to estimate when computing the uplift curve with their statistical estimates.
More precisely, it indicates that the observed proportion of positive outcomes among
the 𝑘 individuals with the highest scores (the ratio 𝑟1(𝑘)/𝑛1(𝑘) in Definition C.1) con-
verges to the theoretical probability of a positive outcome for individuals with a score
higher than a threshold corresponding to 𝑘. To the best of our knowledge, this result
is an original contribution to the literature.

LemmaC.1. Let𝐷te be a test set of random variables iid to (𝑥, 𝑦 , 𝑡), where 𝑡 is randomized,
and letℳ be a model such thatℳ(𝑥) is an absolutely continuous random variable. Let 𝑁
be the size of 𝐷te, 𝜌 ∈ (0, 1) be the prescription rate, and 𝑘 = ⌈𝑁𝜌⌉. The ratio 𝑟1(𝑘)/𝑛1(𝑘),
as defined in Definition C.1, converges to the probability 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1),
where 𝜏 = inf {𝜏 ′ ∶ 𝑃(ℳ(𝑥) ≥ 𝜏 ′) ≥ 𝜌)}. This is expressed formally as

lim𝑁→∞
𝑟1(𝑘)
𝑛1(𝑘)

= 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1) in probability. (C.4)

The proof is given in the next section. The technical difficulty of the proof stems
from the fact that the ratio 𝑟1(𝑘)/𝑛1(𝑘) is defined in terms of a random test set 𝐷te,
while the probability it converges to depends only on 𝑥, 𝑦 and 𝑡 . Lemma C.1 focuses on
the target group (𝑡 = 1), but it can be trivially adapted to the control group (𝑡 = 0). The
proof of Theorem 5.4 follows from this lemma rather simply:

Proof of Theorem 5.4 assuming Lemma C.1. Let us expand the definition of the uplift
curve (Definition C.1):

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te) = lim𝑁→∞

𝑘
𝑁 ( 𝑟0(𝑘)𝑛0(𝑘)

− 𝑟1(𝑘)
𝑛1(𝑘)

)

= ( lim𝑁→∞
⌈𝑁𝜌⌉
𝑁 ) ( lim𝑁→∞

𝑟0(𝑘)
𝑛0(𝑘)

− lim𝑁→∞
𝑟1(𝑘)
𝑛1(𝑘)

) .
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C.2. Proof of Lemma C.1

It is easy to show that lim𝑁→∞ ⌈𝑁𝜌⌉ /𝑁 = 𝜌. Assuming Lemma C.1, which can be
easily adapted to prove the convergence 𝑟0(𝑘)/𝑛0(𝑘), we have

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te)

= 𝜌(𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 0) − 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1))
= 𝜌(𝑃(𝑦0 = 1 ∣ ℳ(𝑥) ≥ 𝜏) − 𝑃(𝑦1 = 1 ∣ ℳ(𝑥) ≥ 𝜏)).

The last equality follows from the randomization of the treatment 𝑡 . Remember that
𝜏 is defined as the largest value that satisfies𝑃(ℳ(𝑥) ≥ 𝜏) ≥ 𝜌. Since ℳ(𝑥) is an ab-
solutely continuous random variable, its cumulative distribution function is absolutely
continuous (with respect to the Lebesgue measure), therefore there will always exist a
value 𝜏 such that 𝑃(ℳ(𝑥) ≥ 𝜏) = 𝜌, leading to

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te)

= 𝑃(𝑦0 = 1,ℳ(𝑥) ≥ 𝜏) − 𝑃(𝑦1 = 1,ℳ(𝑥) ≥ 𝜏) in probability

= ∫ 𝑓𝑥 (𝑥)(𝑃(𝑦0 = 1 ∣ 𝑥) − 𝑃(𝑦1 = 1 ∣ 𝑥))𝕀[ℳ(𝑥) ≥ 𝜏] d𝑥

= ∫ 𝑓𝑥 (𝑥)𝑈 (𝑥)𝕀[ℳ(𝑥) ≥ 𝜏] d𝑥
= 𝔼𝑥 [𝑈 (𝑥)𝕀[ℳ(𝑥, 𝐷t𝑟 ) > 𝜏].

Under the unitary value assumption (Definition 5.10), and following Theorem 5.1, we
have

lim𝑁→∞
1
𝑁 Uplift(𝑘, 𝐷tr, 𝐷te) = 𝔼𝑥 [𝜋(𝑥)𝕀[ℳ(𝑥, 𝐷t𝑟 ) > 𝜏] = Π(𝜌, 𝐷tr) in probability.

C.2 Proof of Lemma C.1

The proof of Lemma C.1 is based on a series of technical lemmas, which are themselves
proven in the next section. Let us define domr additional notation to simplify our
developments:

• Expressions involving multiple binary variables such as 𝑃(𝑡(𝑖) = 1, 𝑏(𝑖) = 1) are
abbreviated as 𝑃(𝑡(𝑖)𝑏(𝑖) = 1).

• The product 𝑦 (𝑖)𝑡(𝑖)𝑏(𝑖) is noted 𝑞(𝑖).
• The probability 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1), which is a function of 𝜏 , is simply
noted 𝑆(𝜏 ) = 𝑆.

The random variable 𝑞(𝑖) is equal to one only for individuals in the target group
(𝑡(𝑖) = 1) with a positive outcome (𝑦 (𝑖) = 1) and among the 𝑘 individuals with the
highest score (𝑏(𝑖) = 1). The following lemma indicates that the number of individuals
assigned to the target group among those with the highest scores follows a binomial
distribution, even after observing that the outcome 𝑦 (𝑖), treatment 𝑡(𝑖) and selection
indicator 𝑏(𝑖) of a given individual are all positive. This result will be used to derive a
closed-form expression for some terms in the development of the uplift curve.
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C. Convergence of the uplift curve to the profit measure

Lemma C.2. Let 𝑖 ∈ {1, … , 𝑁 }. 𝑛1(𝑘) − 1 ∣ 𝑞(𝑖) = 1 follows a binomial distribution
Bin(𝑘 − 1, 𝑝).

This is generalized to the case of two observations as follows.

Lemma C.3. Let 𝑖, 𝑗 ∈ {1, … , 𝑁 }, with 𝑖 ≠ 𝑗. 𝑛1(𝑘) − 2 ∣ 𝑞(𝑖)𝑞(𝑗) = 1 follows a binomial
distribution Bin(𝑘 − 2, 𝑝).

The following lemma states that, in the limit (i.e., as 𝑁 → ∞), the 𝑘 individuals
with the highest scores (i.e., such that 𝑏(𝑖) = 1) are exactly those with a score higher
than the threshold 𝜏 . This is not always the case for low enough 𝑁 , since 𝜏 does not
depend on 𝑁 ; therefore, the individual at rank 𝑘 (when ranked by score) might have a
score different from 𝜏 . Note that the index 𝑁 has no special value in the statement of
this lemma. This lemma could be formulated with any integer smaller or equal than 𝑁 .
We use 𝑁 because it simplifies the notation during the proof of Lemma C.1, where this
lemma is used.

Lemma C.4.

lim𝑁→∞ 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1) = lim𝑁→∞ 𝑃(𝑏(𝑁 ) = 1 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏) = 1.

The following lemma is purely computational, and is required at the end of the
proof of Lemma C.1.

Lemma C.5. For any 0 < 𝑝 < 1, we have

lim𝑘→∞

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 = 0.

Armed with these results, we can now prove Lemma C.1.

LemmaC.1. Let𝐷te be a test set of random variables iid to (𝑥, 𝑦 , 𝑡), where 𝑡 is randomized,
and letℳ be a model such thatℳ(𝑥) is an absolutely continuous random variable. Let 𝑁
be the size of 𝐷te, 𝜌 ∈ (0, 1) be the prescription rate, and 𝑘 = ⌈𝑁𝜌⌉. The ratio 𝑟1(𝑘)/𝑛1(𝑘),
as defined in Definition C.1, converges to the probability 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1),
where 𝜏 = inf {𝜏 ′ ∶ 𝑃(ℳ(𝑥) ≥ 𝜏 ′) ≥ 𝜌)}. This is expressed formally as

lim𝑁→∞
𝑟1(𝑘)
𝑛1(𝑘)

= 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1) in probability. (C.5)

Proof. From Definition 2.10, the convergence in probability of 𝑟1(𝑘)/𝑛1(𝑘) to 𝑆 (remem-
ber that we note 𝑆 = 𝑃(𝑦 = 1 ∣ ℳ(𝑥) ≥ 𝜏 , 𝑡 = 1)) is formally expressed as, for any
𝜀 > 0,

lim𝑁→∞ 𝑃 (| 𝑟1(𝑘)𝑛1(𝑘)
− 𝑆 | ≥ 𝜀) = 0. (C.6)

First, we will show the convergence of the expected value of 𝑟1(𝑘)/𝑛1(𝑘) to 𝑆:

lim𝑁→∞𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)
] = 𝑆. (C.7)

From Definition C.1, we have

𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)
] = 𝔼 [∑

𝑁
𝑖=1 𝑞(𝑖)
𝑛1(𝑘)

] =
𝑁
∑
𝑖=1

𝔼 [ 𝑞(𝑖)
𝑛1(𝑘)

] . (C.8)
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C.2. Proof of Lemma C.1

By decomposing the expected value, we see that when 𝑞(𝑖) (which is either zero or one)
is zero, this specific valuation will not contribute to the expected value. On the other
hand, 𝑛1(𝑘) can take any integer value between 0 and 𝑘. Therefore, the expression
𝑞(𝑖)/𝑛1(𝑘) is either zero1 or any of the values 1, 1/2, … , 1/𝑘. This leads to

𝔼 [ 𝑞(𝑖)
𝑛1(𝑘)

] =
𝑘
∑
𝑛=1

1
𝑛𝑃 ( 𝑞(𝑖)

𝑛1(𝑘)
= 1

𝑛) =
𝑘
∑
𝑛=1

1
𝑛𝑃(𝑛1(𝑘) = 𝑛, 𝑞(𝑖) = 1)

=
𝑘
∑
𝑛=1

1
𝑛𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖) = 1)𝑃(𝑞(𝑖) = 1). (C.9)

Lemma C.2 shows that we can develop Eq. (C.9) as

𝔼 [ 𝑞(𝑖)
𝑛1(𝑘)

] = 𝑃(𝑞(𝑖) = 1)
𝑘
∑
𝑛=1

1
𝑛𝑃(Bin(𝑘 − 1, 𝑝) = 𝑛 − 1).

This sum can be transformed using the probability mass function of the binomial dis-
tribution:

𝑘
∑
𝑛=1

1
𝑛𝑃(Bin(𝑘 − 1, 𝑝) = 𝑛 − 1) =

𝑘
∑
𝑛=1

1
𝑛(

𝑘 − 1
𝑛 − 1)𝑝

𝑛−1(1 − 𝑝)𝑘−𝑛

=
𝑘
∑
𝑛=1

1
𝑛

(𝑘 − 1)!
(𝑛 − 1)!(𝑘 − 𝑛)!𝑝

𝑛−1(1 − 𝑝)𝑘−𝑛

= 1
𝑘𝑝

𝑘
∑
𝑛=1

(𝑘𝑛)𝑝
𝑛(1 − 𝑝)𝑘−𝑛 = 1

𝑘𝑝𝑃(Bin(𝑘, 𝑝) ≥ 1)

= 1
𝑘𝑝 (1 − 𝑃(Bin(𝑘, 𝑝) = 0)) = 1

𝑘𝑝 (1 − (1 − 𝑝)𝑘) .

Wrapping up, Eq. (C.8) can be developed as

𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)
] =

𝑁
∑
𝑖=1

𝔼 [ 𝑞(𝑖)
𝑛1(𝑘)

] =
𝑁
∑
𝑖=1

1
𝑘𝑝 𝑃(𝑞(𝑖) = 1) (1 − (1 − 𝑝)𝑘)

=
𝑁
∑
𝑖=1

1
𝑘𝑝 𝑃(𝑦 (𝑖)𝑡(𝑖)𝑏(𝑖) = 1) (1 − (1 − 𝑝)𝑘) .

Since 𝐷te is iid, the choice of the index 𝑖 in the probability 𝑃(𝑦 (𝑖)𝑡(𝑖)𝑏(𝑖) = 1) does not
matter. In what follows, we replace it by 𝑁 . Note that 𝑡(𝑁 ) ⟂ 𝑏(𝑁 ), and also 𝑃(𝑏(𝑁 ) =
1) = 𝑘/𝑁 and 𝑃(𝑡(𝑁 ) = 1) = 𝑃(𝑡 = 1) = 𝑝, from what we can deduce

𝑃(𝑦 (𝑁 )𝑡(𝑁 )𝑏(𝑁 ) = 1) = 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1)𝑃(𝑡(𝑁 ) = 1)𝑃(𝑏(𝑁 ) = 1)
= 𝑘𝑝

𝑁 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1), (C.10)

and then

𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)
] = 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1) (1 − (1 − 𝑝)𝑘) .

1Remember from Definition C.1 that the ratio 𝑟0(𝑘)/𝑛0(𝑘) is defined as 0 when 𝑛0(𝑘) is equal to zero,
therefore, this case will not contribute to Eq. (C.8).
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C. Convergence of the uplift curve to the profit measure

Since 𝑘 = ⌈𝑁 𝜏⌉ and 𝑝 ∈ (0, 1), it is clear that lim𝑁→∞(1 − (1 − 𝑝)𝑘) = 1. To finish the
proof of Eq. (C.7), it remains to show that

lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1) = 𝑆 = 𝑃(𝑦 = 1 ∣ 𝑡 = 1,ℳ(𝑥) ≥ 𝜏).

From Lemma C.4, we can develop the limit of 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1) as

lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1)

= lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏)𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1)

+ lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥(𝑁 )) < 𝜏)𝑃(ℳ(𝑥(𝑁 )) < 𝜏 ∣ 𝑏(𝑁 ) = 1)

= lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥) ≥ 𝜏).

Similarly, we can develop the limit of 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏) as

lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏)

= lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏)𝑃(𝑏(𝑁 ) = 1 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏)

+ lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 ) = 1, 𝑏(𝑁 ) = 0,ℳ(𝑥(𝑁 )) ≥ 𝜏)𝑃(𝑏(𝑁 ) = 0 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏)

= lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏).

Using these two convergence results, we have

lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1) = lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏)
= lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 ) = 1,ℳ(𝑥(𝑁 )) ≥ 𝜏)
=𝑃(𝑦 = 1 ∣ 𝑡 = 1,ℳ(𝑥) ≥ 𝜏)

where the last equality follows by the iid property of 𝐷te. This finishes the proof of
Eq. (C.7):

lim𝑁→∞𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)
] = lim𝑁→∞ 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1)
= 𝑃(𝑦 = 1 ∣ 𝑡 = 1,ℳ(𝑥) ≥ 𝜏) = 𝑆.

Now, let us show that the variance of 𝑟1(𝑘)/𝑛1(𝑘) converges to 0:

lim𝑁→∞Var ( 𝑟1(𝑘)𝑛1(𝑘)
) = 0. (C.11)

We will compute the variance as

Var ( 𝑟1(𝑘)𝑛1(𝑘)
) = 𝔼 [ 𝑟1(𝑘)

2

𝑛1(𝑘)2
] − 𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)

]
2
.
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C.2. Proof of Lemma C.1

Since we just have proven that 𝔼[𝑟1(𝑘)/𝑛1(𝑘)] converges to 𝑆, we focus on the other
term, 𝔼[𝑟1(𝑘)2/𝑛1(𝑘)2]:

𝔼 [ 𝑟1(𝑘)
2

𝑛1(𝑘)2
] = 𝔼 [

∑𝑁
𝑖=1 𝑞(𝑖) ∑𝑁

𝑗=1 𝑞(𝑗)
𝑛1(𝑘)2

] =
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] . (C.12)

Using a similar argument as for the expected value, note that 𝑞(𝑖)𝑞(𝑗) is either equal to 0
or 1, and that 𝑛1(𝑘) can take any integer value between 0 and 𝑘. Hence the expression
𝑞(𝑖)𝑞(𝑗)/𝑛1(𝑘)2 is either zero2 or any of the values 1, 1/4, … , 1/𝑘2. This leads to

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] =
𝑘
∑
𝑛=1

1
𝑛2 𝑃(𝑛1(𝑘) = 𝑛, 𝑞(𝑖)𝑞(𝑗) = 1)

=
𝑘
∑
𝑛=1

1
𝑛2 𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖)𝑞(𝑗) = 1)𝑃(𝑞(𝑖)𝑞(𝑗) = 1). (C.13)

Using Lemma C.3, the sum in Eq. (C.13) can be developed as, for 𝑖 ≠ 𝑗,
𝑘
∑
𝑛=1

1
𝑛2 𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖)𝑞(𝑗) = 1) =

𝑘
∑
𝑛=1

1
𝑛2 𝑃(Bin(𝑘 − 2, 𝑝) = 𝑛 − 2)

=
𝑘
∑
𝑛=1

𝑛 − 1
𝑛2(𝑛 − 1)(

𝑘 − 2
𝑛 − 2)𝑝

𝑛−2(1 − 𝑝)𝑘−𝑛

= 1
(𝑘 − 1)𝑘𝑝2

𝑘
∑
𝑛=1

𝑛 − 1
𝑛 (𝑘𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛

= 1
(𝑘 − 1)𝑘𝑝2 (1 − (1 − 𝑝)𝑘 −

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛) .

Let us define the notation

𝐴𝑘 =
𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛.

This allows to simplify Eq. (C.13), for 𝑖 ≠ 𝑗, as

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] = 𝑃(𝑞(𝑖)𝑞(𝑗) = 1)1 − (1 − 𝑝)𝑘 − 𝐴𝑘
(𝑘 − 1)𝑘𝑝2 .

Now, let us compute, for 𝑖 ≠ 𝑗, the probability 𝑃(𝑞(𝑖)𝑞(𝑗) = 1). Remember that 𝑡(𝑖) ⟂ 𝑡(𝑗)
for 𝑖 ≠ 𝑗, and that 𝑏(𝑖) ⟂ 𝑡(𝑗) for any 𝑖, 𝑗 (possibly equal). We also use the fact that
𝑦 (𝑖) ⟂ 𝑏(𝑗), 𝑡(𝑗) ∣ 𝑏(𝑖), 𝑡(𝑖) for 𝑖 ≠ 𝑗.

𝑃(𝑞(𝑖)𝑞(𝑗) = 1) = 𝑃(𝑦 (𝑖)𝑡(𝑖)𝑏(𝑖) = 1 ∣ 𝑦 (𝑗)𝑡(𝑗)𝑏(𝑗) = 1)𝑃(𝑦 (𝑗)𝑡(𝑗)𝑏(𝑗) = 1)
= 𝑃(𝑦 (𝑖) = 1 ∣ 𝑡(𝑖)𝑏(𝑖) = 1)𝑃(𝑏(𝑖) = 1 ∣ 𝑏(𝑗) = 1)𝑃(𝑡(𝑖) = 1)

𝑃(𝑦 (𝑗) = 1 ∣ 𝑡(𝑗)𝑏(𝑗) = 1)𝑃(𝑏(𝑗) = 1)𝑃(𝑡(𝑗) = 1)

= (𝑘 − 1)𝑘𝑝2

(𝑁 − 1)𝑁 𝑃(𝑦 (𝑖) = 1 ∣ 𝑡(𝑖)𝑏(𝑖) = 1)𝑃(𝑦 (𝑗) = 1 ∣ 𝑡(𝑗)𝑏(𝑗) = 1). (C.14)

2Similarly to Eq. (C.7), the expression 𝑞(𝑖)/𝑛1(𝑘) is defined to be zero when 𝑛1(𝑘) = 0 (in Definition C.1),
therefore the ratio 𝑞(𝑖)𝑞(𝑗)/𝑛1(𝑘)2 is well defined even in that case.
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C. Convergence of the uplift curve to the profit measure

When 𝑖 = 𝑗, we have

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] =
𝑘
∑
𝑛=1

1
𝑛2 𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖) = 1)𝑃(𝑞(𝑖) = 1).

From Lemma C.2, the sum can be developed as

𝑘
∑
𝑛=1

1
𝑛2 𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖) = 1) =

𝑘
∑
𝑛=1

1
𝑛2 𝑃(Bin(𝑘 − 1, 𝑝) = 𝑛 − 1)

=
𝑘
∑
𝑛=1

1
𝑛2(

𝑘 − 1
𝑛 − 1)𝑝

𝑛−1(1 − 𝑝)𝑘−𝑛

= 1
𝑘𝑝

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 = 𝐴𝑘
𝑘𝑝 .

Hence we have 𝔼 [𝑞(𝑖)𝑞(𝑗)/𝑛1(𝑘)2] = 𝑃(𝑞(𝑖) = 1)𝐴𝑘/(𝑘𝑝) for 𝑖 = 𝑗. We can develop
Eq. (C.12) as

𝔼 [ 𝑟1(𝑘)
2

𝑛1(𝑘)2
] =

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] =
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1
𝑗≠𝑖

𝔼 [𝑞
(𝑖)𝑞(𝑗)
𝑛1(𝑘)2

] +
𝑁
∑
𝑖=1

𝔼 [ 𝑞(𝑖)2
𝑛1(𝑘)2

]

=
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1
𝑗≠𝑖

1 − (1 − 𝑝)𝑘 − 𝐴𝑘
(𝑘 − 1)𝑘𝑝2 𝑃(𝑞(𝑖)𝑞(𝑗) = 1) +

𝑁
∑
𝑖=1

𝐴𝑘
𝑘𝑝 𝑃(𝑞(𝑖) = 1).

Using Eqs. (C.10) and (C.14), we have

=
𝑁
∑
𝑖=1

𝑁
∑
𝑗=1
𝑗≠𝑖

(1 − (1 − 𝑝)𝑘 − 𝐴𝑘
(𝑘 − 1)𝑘𝑝2

(𝑘 − 1)𝑘𝑝2

(𝑁 − 1)𝑁 𝑃(𝑦 (𝑖) = 1 ∣ 𝑡(𝑖)𝑏(𝑖) = 1)

𝑃(𝑦 (𝑗) = 1 ∣ 𝑡(𝑗)𝑏(𝑗) = 1)) +
𝑁
∑
𝑖=1

𝐴𝑘
𝑘𝑝

𝑘𝑝
𝑁 𝑃(𝑦 (𝑖) = 1 ∣ 𝑡(𝑖)𝑏(𝑖) = 1).

By the iid property of 𝐷te, we replace every index 𝑖 or 𝑗 by 𝑁 :

= (1 − (1 − 𝑝)𝑘 − 𝐴𝑘)𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1)2 + 𝐴𝑘𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1).

Let 𝑆𝑁 = 𝑃(𝑦 (𝑁 ) = 1 ∣ 𝑡(𝑁 )𝑏(𝑁 ) = 1). Coming back to Eq. (C.11), the variance is

Var ( 𝑟1(𝑘)𝑛1(𝑘)
) = 𝔼 [ 𝑟1(𝑘)

2

𝑛1(𝑘)2
] − 𝔼 [ 𝑟1(𝑘)𝑛1(𝑘)

]
2

= (1 − (1 − 𝑝)𝑘 − 𝐴𝑘)𝑆2𝑁 + 𝐴𝑘𝑆𝑁 − (1 − (1 − 𝑝)𝑘)2𝑆2𝑁
= (1 − (1 − 𝑝)𝑘 − 1 − (1 − 𝑝)2𝑘 + 2(1 − 𝑝)𝑘 − 𝐴𝑘)𝑆2𝑁 + 𝐴𝑘𝑆𝑁
= ((1 − 𝑝)𝑘 − (1 − 𝑝)2𝑘 − 𝐴𝑘)𝑆2𝑁 + 𝐴𝑘𝑆𝑁 .

Its limit is

lim𝑁→∞Var ( 𝑟1(𝑘)𝑛1(𝑘)
) = lim𝑁→∞ 𝑆𝑁 (1 − 𝑆𝑁 )𝐴𝑘 .
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C.3. Technical results

By Lemma C.5, this converges to zero.
Be Chebychev’s inequality, since𝔼[𝑟1(𝑘)/𝑛1(𝑘)] = 𝑆 (as shown in Eq. C.7), we know

that for any fixed 𝜀 > 0,

𝑃 (| 𝑟1(𝑘)𝑛1(𝑘)
− 𝑆 | ≥ 𝜀) ≤ Var ( 𝑟1(𝑘)𝑛1(𝑘)

) 1
𝜀2 .

This converges to zero according to Eq. (C.11), which we proved above.

C.3 Technical results

In this section, we prove the four lemmas used in the proof of Lemma C.1.

Lemma C.2. Let 𝑖 ∈ {1, … , 𝑁 }. 𝑛1(𝑘) − 1 ∣ 𝑞(𝑖) = 1 follows a binomial distribution
Bin(𝑘 − 1, 𝑝).

Proof. Recall from Definition C.1 that 𝐵 is a vector of binary random variables defined
such that ∑𝑖 𝑏(𝑖) = 𝑘 and ℳ(𝑥(𝑖)) ≥ ℳ(𝑥(𝑗)) whenever 𝑏(𝑖) = 1 and 𝑏(𝑗) = 0 for any
𝑖, 𝑗 ∈ {1, … , 𝑁 }. By independence of the 𝑥(𝑖)’s, 𝐵 is uniformly distributed over the set of
vectors with 𝑘 values equal to one. That is, for any valuation 𝐵 = [𝑏(𝑖)]𝑁𝑖=1 of 𝐵, one has

𝑃(𝐵 = 𝐵) = {0 if ∑𝑖 𝑏(𝑖) ≠ 𝑘,
( 𝑁𝑘 )−1 otherwise.

(C.15)

By independence of the 𝑥(𝑖)’s, the marginal distribution of each 𝑏(𝑖) is a Bernoulli trial
of probability 𝑘/𝑁 . Now, let us fix the index 𝑖 ∈ {1, … , 𝑁 }, and let 𝐵 be a realization of
𝐵 such that ∑𝑗 𝑏(𝑗) = 𝑘 and 𝑏(𝑖) = 1 . Then,

𝑃(𝐵 = 𝐵 ∣ 𝑏(𝑖) = 1) = 𝑃(𝑏(𝑖) = 1 ∣ 𝐵 = 𝐵)𝑃(𝐵 = 𝐵)
𝑃(𝑏(𝑖) = 1)

= 𝑁
𝑘 (𝑁𝑘 )

−1
= (𝑁 − 1

𝑘 − 1 )
−1

. (C.16)

And that probability is zero if 𝐵 is a realization of 𝐵 such that ∑𝑗 𝑏(𝑗) = 1 and 𝑏(𝑖) = 0.
Now, note that 𝑛1(𝑘) ⟂ 𝑦 (𝑖) ∣ 𝑡(𝑖), 𝑏(𝑖), hence 𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖) = 1) = 𝑃(𝑛1(𝑘) = 𝑛 ∣
𝑡(𝑖)𝑏(𝑖) = 1). Also, remember that 𝑛1(𝑘) = ∑𝑖 𝑡(𝑖)𝑏(𝑖), hence the expression 𝑛1(𝑘) = 𝑛 can
be decomposed as

𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑡(𝑖)𝑏(𝑖) = 1) = 𝑃 (𝑡(𝑖)𝑏(𝑖) = 1,
𝑁
∑

𝑗=1,𝑗≠𝑖
𝑡(𝑗)𝑏(𝑗) = 𝑛 − 1 ∣ 𝑡(𝑖)𝑏(𝑖) = 1)

= 𝑃 (
𝑁
∑

𝑗=1,𝑗≠𝑖
𝑡(𝑗)𝑏(𝑗) = 𝑛 − 1 ∣ 𝑏(𝑖) = 1)

where the last equality follows from the independence 𝑡(𝑖) ⟂ 𝑡(𝑗) for 𝑖 ≠ 𝑗 (since 𝑡 is
randomized), and the independence 𝑡(𝑖) ⟂ 𝑏(𝑗) for any 𝑖, 𝑗 (since the treatment does not
influence the scores, and inversely, by randomization). Marginalizing on all possible
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realizations 𝐵 of 𝐵 such that |𝐵| = ∑𝑗 𝑏(𝑗) = 𝑘 and 𝑏(𝑖) = 1, we have

= ∑
𝐵 s.t. |𝐵|=𝑘,

𝑏(𝑖)=1

𝑃(𝐵 = 𝐵 ∣ 𝑏(𝑖) = 1)𝑃 (
𝑁
∑

𝑗=1,𝑗≠𝑖
𝑡(𝑗)𝑏(𝑗) = 𝑛 − 1 ∣ 𝐵 = 𝐵, 𝑏(𝑖) = 1)

= ∑
𝐵 s.t. |𝐵|=𝑘,

𝑏(𝑖)=1

(𝑁 − 1
𝑘 − 1 )

−1
𝑃 (

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑡(𝑗)𝑏(𝑗) = 𝑛 − 1 ∣ 𝐵 = 𝐵) . (by Eq. C.16)

In the expression ∑𝑁
𝑗=1,𝑗≠𝑖 𝑡(𝑗)𝑏(𝑗), we know that 𝑘 − 1 of the 𝑁 − 1 terms 𝑏(𝑗) are equal

to one (because we condition on 𝐵 = 𝐵), therefore, for the sum to equal 𝑛 − 1, we need
𝑛−1 of the corresponding terms 𝑡(𝑗) to equal one. Since they are all independent with a
Bernoulli distribution Bern(𝑝), the probability that 𝑛 −1 of them are one is equal to the
probability of a random variable with binomial distribution Bin(𝑘 − 1, 𝑝) to be equal to
𝑛 − 1. This leads to

𝑃(𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖) = 1) = ∑
𝐵 s.t. |𝐵|=𝑘,

𝑏(𝑖)=1

(𝑁 − 1
𝑘 − 1 )

−1
𝑃(Bin(𝑘 − 1, 𝑝) = 𝑛 − 1)

= 𝑃(Bin(𝑘 − 1, 𝑝) = 𝑛 − 1).

The last equality follows from

∑
𝐵 s.t. |𝐵|=𝑘,

𝑏(𝑖)=1

(𝑁 − 1
𝑘 − 1 )

−1
= 1.

Lemma C.3. Let 𝑖, 𝑗 ∈ {1, … , 𝑁 }, with 𝑖 ≠ 𝑗. 𝑛1(𝑘) − 2 ∣ 𝑞(𝑖)𝑞(𝑗) = 1 follows a binomial
distribution Bin(𝑘 − 2, 𝑝).

Proof. Let 𝐵 = [𝑏(1), … , 𝑏(𝑁 )] be a realization of the random vector 𝐵 = [𝑏(1), … , 𝑏(𝑁 )]
such that 𝑏(𝑖) = 𝑏(𝑗) = 1. Let us compute the probability

𝑃(𝐵 = 𝐵 ∣ 𝑏(𝑖)𝑏(𝑗) = 1) = 𝑃(𝑏(𝑖)𝑏(𝑗) = 1 ∣ 𝐵 = 𝐵)𝑃(𝐵 = 𝐵)
𝑃(𝑏(𝑖) = 1 ∣ 𝑏(𝑗) = 1)𝑃(𝑏(𝑗) = 1)

(C.17)

= (𝑁𝑘 )
−1𝑁 − 1

𝑘 − 1
𝑁
𝑘 = (𝑁 − 2

𝑘 − 2 )
−1

. (C.18)

Using a similar reasoning as in the proof of Lemma C.2, we marginalize the probability
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𝑃 (𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖)𝑞(𝑗) = 1) over the distribution of 𝐵:

𝑃 (𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖)𝑞(𝑗) = 1)
= ∑

𝐵 s.t.|𝐵|=𝑘
𝑏(𝑖)𝑏(𝑗)=1

𝑃 (𝑛1(𝑘) = 𝑛 ∣ 𝐵 = 𝐵, 𝑞(𝑖)𝑞(𝑗) = 1) 𝑃(𝐵 = 𝐵 ∣ 𝑏(𝑖)𝑏(𝑗) = 1) (by Eq. C.18)

= ∑
𝐵 s.t.|𝐵|=𝑘
𝑏(𝑖)𝑏(𝑗)=1

(𝑁 − 2
𝑘 − 2 )

−1
𝑃 (

𝑁
∑
ℓ=1

𝑡(ℓ)𝑏(ℓ) = 𝑛 ∣ 𝐵 = 𝐵, 𝑞(𝑖)𝑞(𝑗) = 1)

= ∑
𝐵 s.t.|𝐵|=𝑘
𝑏(𝑖)𝑏(𝑗)=1

(𝑁 − 2
𝑘 − 2 )

−1
𝑃 (

𝑁
∑

ℓ=1,ℓ≠𝑖,𝑗
𝑡(ℓ)𝑏(ℓ) = 𝑛 − 2 ∣ 𝐵 = 𝐵) . (C.19)

Again, the probability that ∑𝑁
ℓ=1,ℓ≠𝑖,𝑗 𝑡(ℓ)𝑏(ℓ) is equal to 𝑛 − 2, given that 𝐵 = 𝐵, is the

same as the probability that for the 𝑘 −2 indices ℓ where 𝑏(ℓ) = 1, 𝑛−2 of the associated
Bernoulli-distributed terms 𝑡(ℓ) are equal to one. In equations, this is written

𝑃 (
𝑁
∑

ℓ=1,ℓ≠𝑖,𝑗
𝑡(ℓ)𝑏(ℓ) = 𝑛 − 2 ∣ 𝐵 = 𝐵) = 𝑃(Bin(𝑘 − 2, 𝑝) = 𝑛 − 2)

for any 𝐵 such that |𝐵| = 𝑘 and 𝑏(𝑖)𝑏(𝑗) = 1. By plugging this in Eq. (C.19), we obtain

𝑃 (𝑛1(𝑘) = 𝑛 ∣ 𝑞(𝑖)𝑞(𝑗) = 1) = ∑
𝐵 s.t.|𝐵|=𝑘
𝑏(𝑖)𝑏(𝑗)=1

(𝑁 − 2
𝑘 − 2 )

−1
𝑃(Bin(𝑘 − 2, 𝑝) = 𝑛 − 2)

= 𝑃(Bin(𝑘 − 2, 𝑝) = 𝑛 − 2).
The last equality follows from

∑
𝐵 s.t.|𝐵|=𝑘
𝑏(𝑖)𝑏(𝑗)=1

(𝑁 − 2
𝑘 − 2 )

−1
= 1.

Lemma C.4.

lim𝑁→∞ 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1) = lim𝑁→∞ 𝑃(𝑏(𝑁 ) = 1 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏) = 1.

Proof. As mentioned in the previous section, the index𝑁 has no special value here, and
this lemma could be formulated with any integer smaller or equal than 𝑁 . However,
from a practical standpoint, any index other than 1 or 𝑁 would require some special
notation in order to be valid for any value of 𝑁 (e.g., using index 3 would leave the case
𝑁 = 2 undefined). We use 𝑁 specifically because it simplifies the notation during the
proof of Lemma C.1.

This proof requires a few additional definitions. Let 𝐽 = {𝑗 ∈ {1, … , 𝑁 } ∶ 𝑏(𝑗) = 0} be
the set of𝑁 −𝑘 indices with the lowest scores according toℳ. Sinceℳ(𝑥) is absolutely
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continuous, 𝑃(ℳ(𝑥(𝑖)) = ℳ(𝑥(𝑗))) = 0 for any two distinct indices 𝑖, 𝑗, therefore, the
probability that 𝐽 is not uniquely defined is zero. Let 𝜏𝑁 = max𝑗∈𝐽 {ℳ(𝑥(𝑗))} be the
threshold that separates the 𝑁 − 𝑘 instances with the lowest scores from the 𝑘 other
instances. This is the empirical equivalent of 𝜏 with a dataset of size 𝑁 . Since the
dataset is a random variable, 𝜏𝑁 is also a random variable. First, we will prove that
𝜏𝑁 converges to 𝜏 almost surely. Recall that 𝜏 is defined as 𝜏 = inf {𝜏 ′ ∶ 𝑃(ℳ(𝑥) ≥
𝜏 ′) ≥ 𝜌} (see Eq. 5.1). Let 𝐹𝑁 be the empirical cumulative distribution function of

{ℳ(𝑥(𝑖))}𝑁𝑖=1, and let 𝐹ℳ(𝑥) be the cumulative distribution function of ℳ(𝑥). Note that
𝐹𝑁 is a random variable since it is defined in terms of the dataset 𝐷te. We have

lim𝑁→∞ 𝐹𝑁 (𝜏𝑁 ) = lim𝑁→∞
𝑁 − 𝑘 + 1

𝑁 (by def. of 𝐹𝑁 )

= 1 − 𝜌 (by def. of 𝑘)
= 𝑃(ℳ(𝑥) < 𝜏) = 𝐹ℳ(𝑥)(𝜏 ). (by def. of 𝜏 )

The Glivenko-Cantelli theorem states that sup𝑡∈ℝ |𝐹𝑁 (𝑡) − 𝐹ℳ(𝑥)(𝑡)| converges almost
surely to zero. By definition of the supremum, we know that, for any 𝑁 ,

|𝐹𝑁 (𝜏𝑁 ) − 𝐹ℳ(𝑥)(𝜏𝑁 )| ≤ sup
𝑡∈ℝ

|𝐹𝑁 (𝑡) − 𝐹ℳ(𝑥)(𝑡)|.

Thus, |𝐹𝑁 (𝜏𝑁 ) − 𝐹ℳ(𝑥)(𝜏𝑁 )| converges almost surely to zero, and 𝐹𝑁 (𝜏𝑁 ) − 𝐹ℳ(𝑥)(𝜏𝑁 )
as well. We can now develop

lim𝑁→∞ 𝐹𝑁 (𝜏𝑁 ) − 𝐹ℳ(𝑥)(𝜏𝑁 ) = 0 almost surely,

which means that

lim𝑁→∞ 𝐹𝑁 (𝜏𝑁 ) = lim𝑁→∞ 𝐹ℳ(𝑥)(𝜏𝑁 ) = 𝐹ℳ(𝑥) ( lim𝑁→∞ 𝜏𝑁 )

by continuity of 𝐹ℳ(𝑥). Wrapping up, we have 𝐹ℳ(𝑥) (lim𝑁 𝜏𝑁 ) = 𝐹ℳ(𝑥)(𝜏 ). If 𝐹ℳ(𝑥)
is strictly increasing at 𝜏 , then, by continuity, lim𝑁 𝜏𝑁 = 𝜏 , which is what we wanted
to prove. Otherwise, there is a interval [𝑎, 𝑏] with 𝑎 < 𝑏 such that 𝐹ℳ(𝑥)(𝑡) = 𝐹ℳ(𝑥)(𝜏 )
for any 𝑡 ∈ [𝑎, 𝑏]. Since 𝐹ℳ(𝑥) (lim𝑁 𝜏𝑁 ) = 𝐹ℳ(𝑥)(𝜏 ), we have lim𝑁 𝜏𝑁 ∈ [𝑎, 𝑏]. Since
𝐹ℳ(𝑥)(𝑎) = 𝐹ℳ(𝑥)(𝑏), we know that 𝑃(𝑎 < ℳ(𝑥) < 𝑏) = 0, hence lim𝑁 𝜏𝑁 is either 𝑎
or 𝑏. In fact, 𝜏𝑁 = 𝑎 because 𝜏𝑁 is defined as max𝑗∈𝐽 {ℳ(𝑥(𝑗))}, the maximum of the
𝑁 − 𝑘 lowest scores. Also, by definition of 𝜏 , we have 𝜏 = inf [𝑎, 𝑏] = 𝑎. Therefore,
lim𝑁 𝜏𝑁 = 𝜏 .

Now, we are ready to prove that lim𝑁→∞ 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝑡 ∣ 𝑏(𝑁 ) = 1) = 1:

𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1) = 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏𝑁 )
= 1 − 𝑃(ℳ(𝑥(𝑁 )) < 𝜏 ∣ ℳ(𝑥(𝑁 )) ≥ 𝜏𝑁 )

= 1 − 𝑃(𝜏𝑁 ≤ ℳ(𝑥(𝑁 )) < 𝜏)
𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏𝑁 ) .

Since 𝜏𝑁 converges to 𝜏 , 𝑃(𝜏𝑁 < ℳ(𝑥(𝑁 )) < 𝜏) converges to zero, and therefore
𝑃(ℳ(𝑥(𝑁 )) ≥ 𝑡 ∣ 𝑏(𝑁 ) = 1) converges to one. This proves the first part of the claim. We
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can then use Bayes’ theorem to develop

𝑃(𝑏(𝑁 ) = 1 ∣ ℳ(𝑥(𝑁 )) ≥ 𝑡) = 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1) 𝑃(𝑏(𝑁 ) = 1)
𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏)

= 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1)𝑘/𝑁𝜌

which converges to the same value as 𝑃(ℳ(𝑥(𝑁 )) ≥ 𝜏 ∣ 𝑏(𝑁 ) = 1), that is, 1. This proves
the second part of Lemma C.4.

Lemma C.5. For any 0 < 𝑝 < 1, we have

lim𝑘→∞

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 = 0.

Proof.

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 =
𝑘
∑
𝑛=1

1
𝑛
𝑛 + 1
𝑘 + 1(

𝑘 + 1
𝑛 + 1)𝑝

𝑛(1 − 𝑝)𝑘−𝑛

= 1
𝑘 + 1

𝑘
∑
𝑛=1

𝑛 + 1
𝑛 (𝑘 + 1

𝑛 + 1)𝑝
𝑛(1 − 𝑝)𝑘−𝑛.

Since (𝑛 + 1)/𝑛 ≤ 2, we have

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 ≤ 2
𝑘 + 1

𝑘
∑
𝑛=1

(𝑘 + 1
𝑛 + 1)𝑝

𝑛(1 − 𝑝)𝑘−𝑛

= 2
𝑝(𝑘 + 1)

𝑘+1
∑
𝑛=2

(𝑘 + 1
𝑛 )𝑝𝑛(1 − 𝑝)𝑘+1−𝑛

≤ 2
𝑝(𝑘 + 1)

𝑘+1
∑
𝑛=0

(𝑘 + 1
𝑛 )𝑝𝑛(1 − 𝑝)𝑘+1−𝑛

= 2
𝑝(𝑘 + 1)

𝑘+1
∑
𝑛=0

𝑃(Bin(𝑘 + 1, 𝑝) = 𝑛) = 2
𝑝(𝑘 + 1) .

Therefore

lim𝑘→∞

𝑘
∑
𝑛=1

1
𝑛(

𝑘
𝑛)𝑝

𝑛(1 − 𝑝)𝑘−𝑛 ≤ lim𝑘→∞
2

𝑝(𝑘 + 1) = 0.

Since each term of the sum is positive, the limit is equal to zero.

179





D
Properties of the bivariate beta

distribution

In this appendix, we derive several properties of the bivariate beta distribution devel-
oped by Olkin and Trikalinos (2015), which is used in Sections 5.3.3, 6.4 and 6.5.1. Then,
we derive some of these properties for the variations of the bivariate beta distribution
proposed in Sections 6.4.4 to 6.4.6. We use the notation of Chapter 6, where 𝜇 is a four-
dimensional random vector with positive values summing up to one. In Chapter 5 we
added a superscript (𝑖) to highlight the fact that each individual is associated with a
different realization of 𝜇, and to avoid the confusion with population-level counterfac-
tuals 𝛼, … , 𝛿 . As in Chapter 6, in this appendix we omit the superscripts to ease the
already heavy notation, at the risk of being less clear. We note the components of 𝜇 as
𝛼, 𝛽, 𝛾 , 𝛿 , or 𝜇1, 𝜇2, 𝜇3, 𝜇4. Also, 𝑚 is a 4-dimensional vector with positive values, whose
components are noted 𝑎, 𝑏, 𝑐, 𝑑 or 𝑚1, 𝑚2, 𝑚3, 𝑚4. Their sum is noted 𝑀 = 𝑎 + 𝑏 + 𝑐 + 𝑑 .

D.1 Original bivariate beta distribution

In this section, we focus on the following data-generating process;

𝜇 ∼ Dir(𝑚) (D.1)

𝑆0 = 𝛽 + 𝛿 (D.2)

𝑆1 = 𝛾 + 𝛿. (D.3)

We say that the pair of random variables (𝑆0, 𝑆1) follows a bivariate beta distribution
BB(𝑚). Their joint probability density function, reproduced from Eqs. (6.75) and (6.78),
is

𝑓𝑆0,𝑆1(𝑆0, 𝑆1) = ∫Λ(𝑆0,𝑆1)
𝑓𝜇(𝜇) d𝜇 = 1

Β(𝑚) ∫Λ(𝑆0,𝑆1)

4
∏
𝑗=1

𝜇𝑚𝑗−1
𝑗 d𝜇 (D.4)

= 1
Β(𝑚) ∫

min{𝑆0,𝑆1}

max{0,𝑆0+𝑆1−1}
(1 − 𝑆0 − 𝑆1 + 𝛿)𝑎−1(𝑆0 − 𝛿)𝑏−1(𝑆1 − 𝛿)𝑐−1𝛿𝑑−1 d𝛿. (D.5)
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From this bivariate beta distribution, we sample the binary potential outcomes 𝑦0, 𝑦1
according to

𝑃(𝑦0 = 0, 𝑦1 = 0 ∣ 𝜇 = 𝜇) = 𝛼 (D.6)

𝑃(𝑦0 = 1, 𝑦1 = 0 ∣ 𝜇 = 𝜇) = 𝛽 (D.7)

𝑃(𝑦0 = 0, 𝑦1 = 1 ∣ 𝜇 = 𝜇) = 𝛾 (D.8)

𝑃(𝑦0 = 1, 𝑦1 = 1 ∣ 𝜇 = 𝜇) = 𝛿 (D.9)

or, more succinctly,

(𝑦0, 𝑦1) ∼ Cat(𝜇). (D.10)

From this, it is easy to show that 𝑃(𝑦0 = 1 ∣ 𝑆0 = 𝑆0) = 𝑆0 and 𝑃(𝑦1 = 1 ∣ 𝑆1 = 𝑆1) = 𝑆1.
First, we provide an analytical formula that relates the mutual information between

𝑦0, 𝑦1 and 𝜇 to the sum of the distribution parameters. This is used in Section 5.3.3, and
in Section 6.5.1 to illustrate Theorem 6.1.

Result D.1. The mutual information between 𝑦0, 𝑦1 (either jointly or separately) and 𝜇
is given by

𝐼 (𝑦0, 𝑦1; 𝜇) = 𝐻(𝑦0, 𝑦1) − 𝜓(𝑀 + 1) +
4

∑
𝑗=1

𝑚𝑗
𝑀 𝜓(𝑚𝑗 + 1) (D.11)

𝐼 (𝑦0; 𝜇) = 𝐻(𝑦0) − 𝜓(𝑀 + 1) + 𝑏 + 𝑑
𝑀 𝜓(𝑏 + 𝑑 + 1) + 𝑎 + 𝑐

𝑀 𝜓(𝑎 + 𝑐 + 1) (D.12)

𝐼 (𝑦1; 𝜇) = 𝐻(𝑦1) − 𝜓(𝑀 + 1) + 𝑐 + 𝑑
𝑀 𝜓(𝑐 + 𝑑 + 1) + 𝑎 + 𝑏

𝑀 𝜓(𝑎 + 𝑏 + 1). (D.13)

where 𝜓(𝑥) = Γ′(𝑥)/Γ(𝑥) is the digamma function. Furthermore, as 𝑀 → 0, the mu-
tual information (respectively, 𝐼 (𝑦0, 𝑦1; 𝜇), 𝐼 (𝑦0; 𝜇), and 𝐼 (𝑦1; 𝜇)) converges to the entropy
(respectively, 𝐻(𝑦0, 𝑦1), 𝐻(𝑦0), and 𝐻(𝑦1)), and, as 𝑀 → ∞, the mutual information
converges to zero.

Proof. Using the identity 𝐼 (𝑣 , 𝑤) = 𝐻(𝑣) − 𝐻(𝑣 ∣ 𝑤) (see Eq. 2.21), we start by proving

𝐻(𝑦0, 𝑦1 ∣ 𝜇) = 𝜓(𝑀 + 1) −
4

∑
𝑗=1

𝑚𝑗
𝑀 𝜓(𝑚𝑗 + 1) (D.14)

𝐻(𝑦0 ∣ 𝜇) = 𝜓(𝑀 + 1) − 𝑏 + 𝑑
𝑀 𝜓(𝑏 + 𝑑 + 1) − 𝑎 + 𝑐

𝑀 𝜓(𝑎 + 𝑐 + 1) (D.15)

𝐻(𝑦1 ∣ 𝜇) = 𝜓(𝑀 + 1) − 𝑐 + 𝑑
𝑀 𝜓(𝑐 + 𝑑 + 1) − 𝑎 + 𝑏

𝑀 𝜓(𝑎 + 𝑏 + 1). (D.16)

First, we show the derivation for 𝐻(𝑦0, 𝑦1 ∣ 𝜇). The conditional entropy of 𝑦0, 𝑦1 given
a realization 𝜇 = 𝜇 is

𝐻(𝑦0, 𝑦1 ∣ 𝜇 = 𝜇) = −𝛼 log 𝛼 − 𝛽 log 𝛽 − 𝛾 log 𝛾 − 𝛿 log 𝛿

= −
4

∑
𝑗=1

𝜇𝑗 log 𝜇𝑗 .

The conditional entropy 𝐻(𝑦0, 𝑦1 ∣ 𝜇) is the expected value of that quantity over the
distribution of 𝜇,

𝐻(𝑦0, 𝑦1 ∣ 𝜇) = ∫Λ 𝐻(𝑦0, 𝑦1 ∣ 𝜇 = 𝜇)𝑓𝜇(𝜇) d𝜇,
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where Λ is the unit 4-dimensional simplex Λ = {𝜇 ∣ 𝜇𝑗 ≥ 0 and ∑𝑗 𝜇𝑗 = 1}, and 𝑓𝜇 is the
pdf of the Dirichlet distribution Dir(𝑚). We can develop this as

𝐻(𝑦0, 𝑦1 ∣ 𝜇) = −∫Λ 𝑓𝜇(𝜇)
4

∑
𝑗=1

𝜇𝑗 log 𝜇𝑗 d𝜇

= − 1
Β(𝑚)

4
∑
𝑗=1

∫Λ 𝜇𝑗 log 𝜇𝑗
4

∏
𝑘=1

𝜇𝑚𝑘−1𝑘 d𝜇

= − 1
Β(𝑚)

4
∑
𝑗=1

ℐ𝑗

where we defined

ℐ𝑗 = ∫Λ 𝜇𝑗 log 𝜇𝑗
4

∏
𝑘=1

𝜇𝑚𝑘−1𝑘 d𝜇 = ∫Λ 𝜇𝑚𝑗
𝑗 log 𝜇𝑗 ∏

𝑘≠𝑗
𝜇𝑚𝑘−1𝑘 d𝜇.

We can separate the integral over the four-dimensional domain Λ to integrate first on
𝜇𝑗 and then the remaining dimensions, leading to

ℐ𝑗 = ∫
1

0
𝜇𝑚𝑗
𝑗 log 𝜇𝑗 ∫Λ(𝜇𝑗)

∏
𝑘≠𝑗

𝜇𝑚𝑘−1𝑘 d𝜇−𝑗 d𝜇𝑗

where we defined 𝜇−𝑗 = [𝜇𝑘]𝑘≠𝑗 as the vector of 𝜇 without 𝜇𝑗 , and Λ(𝜇𝑗) as the set of
three-dimensional vectors summing up to 1 − 𝜇𝑗 :

Λ(𝜇𝑗) = {𝜇−𝑗 ∶ 𝜇𝑘 > 0,∑
𝑘≠𝑗

𝜇𝑘 = 1 − 𝜇𝑗}.

We use the Leibniz integral rule and the fact that d𝑎𝑥/ d𝑥 = 𝑎𝑥 log 𝑎 to express ℐ𝑗 as

ℐ𝑗 = ∫
1

0
𝜕𝜇𝑚𝑗

𝑗
𝜕𝑚𝑗 ∫Λ(𝜇𝑗)

∏
𝑘≠𝑗

𝜇𝑚𝑘−1𝑘 d𝜇−𝑗 d𝜇𝑗

= 𝜕
𝜕𝑚𝑗 ∫

1

0
𝜇𝑚𝑗
𝑗 ∫Λ(𝜇𝑗)

∏
𝑘≠𝑗

𝜇𝑚𝑘−1𝑘 d𝜇−𝑗 d𝜇𝑗

= 𝜕
𝜕𝑚𝑗 ∫Λ

𝜇𝑚𝑗
𝑗 ∏

𝑘≠𝑗
𝜇𝑚𝑘−1𝑘 d𝜇.

Note that this last expression is the partial derivative of the Beta function on a vector
𝑚′ = [𝑚1, … , 𝑚𝑗 + 1,… , 𝑚4]. This partial derivative can also be expressed in terms of
the digamma function:

ℐ𝑖 = 𝜕Β(𝑚′)
𝜕𝑚𝑗

= Β(𝑚′)(𝜓 (𝑚𝑗 + 1) − 𝜓(𝑀 + 1))

= 𝑚1
𝑀 Β(𝑚)(𝜓 (𝑚𝑗 + 1) − 𝜓(𝑀 + 1))

where we used the identity

Β(𝑚′) =
Γ(𝑚𝑗 + 1)∏𝑘≠𝑗 Γ(𝑚𝑘)

Γ(𝑀 + 1) =
𝑚𝑗Γ(𝑚𝑗)∏𝑘≠𝑗 Γ(𝑚𝑘)

𝑀Γ(𝑀) = 𝑚𝑗
𝑀 Β(𝑚).
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Finally, the conditional entropy of 𝑦0, 𝑦1 is

𝐻(𝑦0, 𝑦1 ∣ 𝜇) = − 1
Β(𝑚)

4
∑
𝑗=1

ℐ𝑗 = −
4

∑
𝑗=1

𝑚𝑗
𝑀 (𝜓(𝑚𝑗 + 1) − 𝜓(𝑀 + 1))

= 𝜓(𝑀 + 1) −
4

∑
𝑗=1

𝑚𝑗
𝑀 𝜓(𝑚𝑗 + 1).

Note that since the distribution of 𝑦0 only depends upon 𝑆0, we have that 𝐻(𝑦0 ∣ 𝜇) =
𝐻(𝑦0 ∣ 𝑆0). Using a similar reasoning as for joint entropy, the marginal entropy is
developed as

𝐻(𝑦0 ∣ 𝜇) = 𝐻(𝑦0 ∣ 𝑆0) = −∫
1

0
(𝑠0 log 𝑠0 + (1 − 𝑠0) log(1 − 𝑠0))𝑓𝑆0(𝑠0) d𝑠0

where 𝑓𝑆0 is the pdf of 𝑆0. As shown by Olkin and Trikalinos (2015), 𝑆0 follows a beta
distribution Beta(𝑏 + 𝑑, 𝑎 + 𝑐). Therefore, we can expand its pdf as

𝐻(𝑦0 ∣ 𝜇) = − 1
Β(𝑏 + 𝑑, 𝑎 + 𝑐) ∫

1

0
(𝑠0 log 𝑠0 + (1 − 𝑠0) log(1 − 𝑠0))𝑠𝑏+𝑑−10 (1 − 𝑠0)𝑎+𝑐−1 d𝑠0

= − 1
Β(𝑏 + 𝑑, 𝑎 + 𝑐) ∫

1

0
(𝑠𝑏+𝑑0 (1 − 𝑠0)𝑎+𝑐−1 log 𝑠0 + 𝑠𝑏+𝑑−10 (1 − 𝑠0)𝑎+𝑐 log(1 − 𝑠0)) d𝑠0.

As above, we use the Leibniz integral rule and identity d𝑎𝑥/ d𝑥 = 𝑎𝑥 log 𝑎 to express
the equation above in terms of the derivative of the Beta function and ultimately in
terms of the digamma function:

𝐻(𝑦0 ∣ 𝜇) = − 1
Β(𝑏 + 𝑑, 𝑎 + 𝑐) ∫

1

0
( 𝜕𝑠𝑧0

𝜕𝑧 |
𝑧=𝑏+𝑑

(1 − 𝑠0)𝑎+𝑐−1 + 𝑠𝑏+𝑑−10
𝜕(1 − 𝑠0)𝑧

𝜕𝑧 |
𝑧=𝑎+𝑐

) d𝑠0

= − 1
Β(𝑏 + 𝑑, 𝑎 + 𝑐) (

𝜕Β(𝑏 + 𝑑 + 1, 𝑎 + 𝑐)
𝜕(𝑏 + 𝑑) + 𝜕Β(𝑏 + 𝑑, 𝑎 + 𝑐 + 1)

𝜕(𝑎 + 𝑐) )

= − (𝑏 + 𝑑
𝑀 (𝜓(𝑏 + 𝑑 + 1) − 𝜓(𝑀 + 1)) + 𝑎 + 𝑐

𝑀 (𝜓(𝑎 + 𝑐 + 1) − 𝜓(𝑀 + 1)))

= 𝜓(𝑀 + 1) − 𝑏 + 𝑑
𝑀 𝜓(𝑏 + 𝑑 + 1) − 𝑎 + 𝑐

𝑀 𝜓(𝑎 + 𝑐 + 1).

The proof for 𝐻(𝑦1 ∣ 𝜇) follows a similar development.

Now, we provide an analytical formula for the raw moments of the bivariate beta
distribution.

Result D.2. The raw moments of (𝑆0, 𝑆1) ∼ BB(𝑚) of order 𝑟 , 𝑠 > 0, noted 𝑅𝑟 𝑠(𝑆0, 𝑆1), are

𝑅𝑟 𝑠(𝑆0, 𝑆1) = 𝔼[𝑆𝑟0𝑆𝑠1] =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

Β(𝑎, 𝑏 + 𝑟 − 𝑝, 𝑐 + 𝑠 − 𝑞, 𝑑 + 𝑝 + 𝑞)
Β(𝑎, 𝑏, 𝑐, 𝑑) .

When 𝑟 and 𝑠 are positive integers, this reduces to

𝑅𝑟 𝑠(𝑆0, 𝑆1) = 𝔼[𝑆𝑟0𝑆𝑠1] =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠

where 𝑥𝑛 = 𝑥(𝑥 + 1)… (𝑥 + 𝑛 − 1) is the rising factorial.
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Proof. Let us expand the definition of the raw moments from Definition 2.4:

𝑅𝑟 𝑠(𝑆0, 𝑆1) = 𝔼[𝑆𝑟0𝑆𝑠1] = 𝔼[(𝛽 + 𝛿)𝑟 (𝛾 + 𝛿)𝑠]

= 𝔼 [(
𝑟

∑
𝑝=0

(𝑟𝑝)𝛽
𝑟−𝑝𝛿𝑝)(

𝑠
∑
𝑞=0

(𝑠𝑞)𝛾
𝑠−𝑞𝛿𝑞)]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)𝔼[𝛽

𝑟−𝑝𝛿𝑝𝛾 𝑠−𝑞𝛿𝑞]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

Β(𝑎, 𝑏 + 𝑟 − 𝑝, 𝑐 + 𝑠 − 𝑞, 𝑑 + 𝑝 + 𝑞)
Β(𝑎, 𝑏, 𝑐, 𝑑) .

This proves the first part of the result. We can expand the beta function to obtain

𝑅𝑟 𝑠(𝑆0, 𝑆1) =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

Γ(𝑎)Γ(𝑏 + 𝑟 − 𝑝)Γ(𝑐 + 𝑠 − 𝑞)Γ(𝑑 + 𝑝 + 𝑞)Γ(𝑀)
Γ(𝑀 + 𝑟 + 𝑠)Γ(𝑎)Γ(𝑏)Γ(𝑐)Γ(𝑑) .

We can show that Γ(𝑥 + 𝑛) = Γ(𝑥)𝑥𝑛 for a positive integer 𝑛. Then, when 𝑟 and 𝑠 are
positive integers, the raw moments simplify to

𝑅𝑟 𝑠(𝑆0, 𝑆1) = 𝔼[𝑆𝑟0𝑆𝑠1] =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 .

Result D.3. The partial derivative of the raw moments of (𝑆0, 𝑆1) ∼ BB(𝑚) for integers
𝑟 , 𝑠 > 0 is

𝜕𝑅𝑟 𝑠(𝑆0, 𝑆1)
𝜕𝑚𝑖

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 (𝑚∗𝑖 − 𝑀𝑟+𝑠) (D.17)

where 𝑥𝑛, that we name the harmonic difference, is defined as

𝑥𝑛 =
𝑛−1
∑
𝑖=0

1
𝑥 + 𝑖 , (D.18)

and

𝑚∗1 = 0 𝑚∗2 = 𝑏𝑟−𝑝 𝑚∗3 = 𝑐𝑠−𝑞 𝑚∗4 = 𝑑𝑝+𝑞 .
Proof. The partial derivative of the raw moments can be readily expressed as

𝜕𝑅𝑟 𝑠(𝑆0, 𝑆1)
𝜕𝑚𝑖

= 𝜕
𝜕𝑚𝑖

𝑟
∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝜕
𝜕𝑚𝑖

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 . (D.19)

In this expression, we have to compute the derivative of the rising factorial function.
Using the product rule for differentiation, we have

𝜕𝑥𝑛
𝜕𝑥 = 𝜕

𝜕𝑥
𝑛−1
∏
𝑖=0

(𝑥 + 𝑖) =
𝑛−1
∏
𝑖=0

(𝑥 + 𝑖)
𝑛−1
∑
𝑖=0

1
𝑥 + 𝑖

𝜕𝑥 + 𝑖
𝜕𝑥 = 𝑥𝑛𝑥𝑛.
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Applying this result to Eq. (D.19), we can find

𝜕
𝜕𝑎

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 = −𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞

(𝑀 𝑟+𝑠)2
𝑀 𝑟+𝑠𝑀𝑟+𝑠 =

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
(𝑀 𝑟+𝑠)

(−𝑀𝑟+𝑠)

𝜕
𝜕𝑏

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 =

𝑏𝑟−𝑝𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠 − 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠𝑀𝑟+𝑠
(𝑀 𝑟+𝑠)2

= 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 (𝑏𝑟−𝑝 − 𝑀𝑟+𝑠)

𝜕
𝜕𝑐

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 =

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑐𝑠−𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠 − 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠𝑀𝑟+𝑠
(𝑀 𝑟+𝑠)2

= 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 (𝑐𝑠−𝑞 − 𝑀𝑟+𝑠)

𝜕
𝜕𝑏

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 =

𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠 − 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞𝑀 𝑟+𝑠𝑀𝑟+𝑠
(𝑀 𝑟+𝑠)2

= 𝑏𝑟−𝑝𝑐𝑠−𝑞𝑑𝑝+𝑞
𝑀 𝑟+𝑠 (𝑑𝑝+𝑞 − 𝑀𝑟+𝑠).

In the following result, we derive an approximate analytical solution for the value
of 𝑚 that (approximately) matches the first four sample moments.

Result D.4. An initial approximate solution for the parameter vector 𝑚 = [𝑎, 𝑏, 𝑐, 𝑑] to
match the sample moments 𝑅10, 𝑅01, 𝑅20 and 𝑅02 is given by

𝑀 = 1
2 (𝑅10 − 𝑅20

𝑅20 − 𝑅210
+ 𝑅01 − 𝑅02

𝑅02 − 𝑅201
) (D.20)

𝑎 = 𝑀(1 − 𝑅10)(1 − 𝑅01) (D.21)

𝑏 = 𝑀𝑅10(1 − 𝑅01) (D.22)

𝑐 = 𝑀(1 − 𝑅10)𝑅01 (D.23)

𝑑 = 𝑀𝑅10𝑅01. (D.24)

Proof. Equating the first four moments with the first four sample moments (given in
Result D.2) gives

𝑅10 = 𝑏 + 𝑑
𝑀 𝑅01 = 𝑐 + 𝑑

𝑀
𝑅20 = (𝑏 + 𝑑)(𝑏 + 𝑑 + 1)

𝑀(𝑀 + 1) 𝑅02 = (𝑐 + 𝑑)(𝑐 + 𝑑 + 1)
𝑀(𝑀 + 1) .

Substituting the top twp equations into the bottom ones gives

𝑅20 = 𝑅10
𝑏 + 𝑑 + 1
𝑀 + 1 𝑅02 = 𝑅01

𝑐 + 𝑑 + 1
𝑀 + 1 .

We can derive two different constraints on 𝑀 ,

𝑀0 = 𝑅10 − 𝑅20
𝑅20 − 𝑅210

and 𝑀1 = 𝑅01 − 𝑅02
𝑅02 − 𝑅201

.
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This indicates that, in general, the system does not have a solution unless𝑀0 and𝑀1 are
identical. In fact, if we denote the marginal beta distributions of 𝑆0 and 𝑆1 respectively
as Beta(𝑏0+𝑑0, 𝑎0+𝑐0) and Beta(𝑐1+𝑑1, 𝑎1+𝑏1), we have a unique value for𝑚when 𝑎0+𝑏0+
𝑐0+𝑑0 = 𝑎1+𝑏1+𝑐1+𝑑1. The sum of the parameters of the beta distribution is sometimes
called the scale parameter. To obtain a solution for 𝑚, we make two assumptions:

(i) The values of 𝑀0 and 𝑀1 are equal, which is equivalent to say that the sum of
the parameters of the beta marginal distributions (i.e., the scale parameters) of
𝑆0 and 𝑆1 are equal.

(ii) The potential outcomes 𝑦0 and 𝑦1 are independent, noted 𝑦0 ⟂ 𝑦1. This is a
similar but stronger assumption than that used in Section 6.3.

Following the first assumption, we set

𝑀 = 𝑀0 + 𝑀1
2 .

From the second assumption and the moments of the Dirichlet and bivariate beta dis-
tributions, we have

𝑃(𝑦0 = 1, 𝑦1 = 1) = 𝑃(𝑦0 = 1)𝑃(𝑦1 = 1)
𝑑
𝑀 = (𝑏 + 𝑑

𝑀 ) (𝑐 + 𝑑
𝑀 )

𝑑 = 𝑀𝑅10𝑅01,
and similarly for 𝑎, 𝑏 and 𝑐. We do not expect the two above assumptions to hold in
the general case; instead, the solution derived from these assumptions is used as an
initial guess for the optimization procedure in Section 6.4. The most important benefit
of this initial solution is having a reasonable initial value for 𝑀 , which helps to reduce
the number of iterations given the large size of the space of possible values for 𝑚, viz.
ℝ4>0.

D.2 Generalized bivariate beta distribution

The generalized bivariate beta (GBB), used in Section 6.4.4, is similar to the bivariate
beta described in Appendix D.1, with the exception that the random vector 𝜇 is sam-
pled from a generalized Dirichlet distribution, which is more flexible than the usual
Dirichlet distribution (Connor andMosimann, 1969). Let 𝑧1, 𝑧2, 𝑧3 be three independent
random variables with distributions Beta(𝑎1, 𝑏1), Beta(𝑎2, 𝑏2), and Beta(𝑎3, 𝑏3). Then,
𝜇 = [𝜇1, … , 𝜇4] is defined as

𝜇𝑖 = 𝑧𝑖
𝑖−1
∏
𝑗=1

(1 − 𝑧𝑗) for 𝑖 = 1, … , 4

with 𝑧4 = 1. We say that 𝜇 follows a generalized Dirichlet distribution, noted 𝜇 ∼
GD(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3). More explicitly, we have

𝛼 = 𝜇1 = 𝑧1 (D.25)

𝛽 = 𝜇2 = 𝑧2(1 − 𝑧1) (D.26)

𝛾 = 𝜇3 = 𝑧3(1 − 𝑧1)(1 − 𝑧2) (D.27)

𝛿 = 𝜇4 = (1 − 𝑧1)(1 − 𝑧2)(1 − 𝑧3). (D.28)
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The corresponding bivariate beta distribution, noted (𝑆0, 𝑆1) ∼ GBB(𝑎1, … , 𝑏3), is sam-
pled as follows.

𝜇 ∼ GD(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) (D.29)

𝑆0 = 𝛽 + 𝛿 (D.30)

𝑆1 = 𝛾 + 𝛿. (D.31)

We now derive the properties of the generalized Dirichlet distribution and of the gen-
eralized bivariate beta distribution used in Section 6.4.4.

Result D.5. The probability density function of 𝜇 ∼ GD(𝑎1, … , 𝑏3) is
𝑓𝜇(𝜇) = 1

∏3
𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)

𝛼𝑎1−1𝛽𝑎2−1𝛾 𝑎3−1𝛿𝑏3−1(𝛽 + 𝛾 + 𝛿)𝑏1−𝑎2−𝑏2(𝛾 + 𝛿)𝑏2−𝑎3−𝑏3 . (D.32)

The probability density function of (𝑆0, 𝑆1) ∼ GBB(𝑎1, … , 𝑏3) is

𝑓𝑆0,𝑆1(𝑆0, 𝑆1) = ∫Λ(𝑆0,𝑆1)
𝑓𝜇(𝜇) d𝜇 (D.33)

= 1
∏3

𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)
∫
min{𝑆0,𝑆1}

max{0,𝑆0+𝑆1−1}
(1 − 𝑆0 − 𝑆1 + 𝛿)𝑎1−1(𝑆0 − 𝛿)𝑎2−1(𝑆1 − 𝛿)𝑎3−1

𝛿𝑏3−1(𝑆0 + 𝑆1 − 𝛿)𝑏1−𝑎2−𝑏2𝑆𝑏2−𝑎3−𝑏31 d𝛿.
(D.34)

This result is assumed without an explicit proof in (Connor and Mosimann, 1969).
We believe that the following proof provides useful insights into the behavior of the
generalized Dirichlet distribution.

Proof. By definition of the pdf, the probability that 𝜇 belongs to some set 𝑆 is

𝑃(𝜇 ∈ 𝑆) = ∫𝑆 𝑓𝜇(𝜇) d𝜇.

Let 𝜙 be the function that maps the values of 𝜇 to 𝑧, for 𝑧 = [𝑧1, 𝑧2, 𝑧3]. Using the
formula for integration by substitution, we find

𝑃(𝜇 ∈ 𝑆) = 𝑃(𝑧 ∈ 𝜙(𝑆)) = ∫𝜙(𝑆) 𝑓𝑧(𝑧) d𝑧 = ∫𝑆 𝑓𝑧(𝜙(𝜇))|det𝐽𝜙(𝜇)| d𝜇

where |det(𝐽𝜙(𝜇))| is the absolute value of the determinant of the Jacobian of 𝜙. Since
this is true for any set 𝑆, we can conclude that

𝑓𝜇(𝜇) = 𝑓𝑧(𝜙(𝜇))|det(𝐽𝜙(𝜇))|.
We need to compute the determinant of the Jacobian, det(𝐽𝜙(𝜇)). Note that since we
have three independent beta random variables (𝑧1, 𝑧2, 𝑧3) on one side and a vector of
four random variables summing up to one on the other side (𝛼, 𝛽, 𝛾 , 𝛿), it is convenient
to forget about 𝛼 , and replace it by 1−𝛽 −𝛾 −𝛿 . This ensures that the Jacobian matrix is
square, and hence its determinant well-defined. First, Let us express 𝑧1, 𝑧2, 𝑧3 in terms
of 𝛽, 𝛾 , 𝛿 . From Eqs. (D.25) to (D.28), we find

𝑧1 = 1 − 𝛽 − 𝛾 − 𝛿 1 − 𝑧1 = 𝛽 + 𝛾 + 𝛿 (D.35)

𝑧2 = 𝛽
𝛽 + 𝛾 + 𝛿 1 − 𝑧2 = 𝛾 + 𝛿

𝛽 + 𝛾 + 𝛿 (D.36)

𝑧3 = 𝛾
𝛾 + 𝛿 1 − 𝑧3 = 𝛿

𝛾 + 𝛿 . (D.37)
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The second column of equations will be useful later to simplify the expression of the
pdf of 𝜇. Now, let us compute the Jacobian matrix:

𝜕𝑧1
𝜕𝛽 = −1 𝜕𝑧1

𝜕𝛾 = −1 𝜕𝑧1
𝜕𝛿 = −1

𝜕𝑧2
𝜕𝛽 = 𝛾 + 𝛿

(𝛽 + 𝛾 + 𝛿)2
𝜕𝑧2
𝜕𝛾 = −𝛽

(𝛽 + 𝛾 + 𝛿)2
𝜕𝑧2
𝜕𝛿 = −𝛽

(𝛽 + 𝛾 + 𝛿)2
𝜕𝑧3
𝜕𝛽 = 0 𝜕𝑧3

𝜕𝛾 = 𝛿
(𝛾 + 𝛿)2

𝜕𝑧3
𝜕𝛿 = −𝛾

(𝛾 + 𝛿)2

We can compute the determinant of this matrix by going over the first column (the
partial derivatives with respect to 𝛽), and using the cofactor rule:

det(𝐽𝜙(𝜇)) = − ( 𝛽𝛾 + 𝛽𝛿
(𝛽 + 𝛾 + 𝛿)2(𝛾 + 𝛿)2 ) − 𝛾 + 𝛿

(𝛽 + 𝛾 + 𝛿)2 ( 𝛾 + 𝛿
(𝛾 + 𝛿)2 )

= − 𝛽 + 𝛾 + 𝛿
(𝛽 + 𝛾 + 𝛿)2(𝛾 + 𝛿) = − 1

(𝛽 + 𝛾 + 𝛿)(𝛾 + 𝛿) .

Hence the pdf of 𝜇 is

𝑓𝜇(𝜇) = 𝑓𝑧1,𝑧2,𝑧3 (𝛼,
𝛽

𝛽 + 𝛾 + 𝛿 ,
𝛾

𝛾 + 𝛿 ) |det(𝐽𝜙(𝜇))|

= 1
∏3

𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)
𝛼𝑎1−1(𝛽 + 𝛾 + 𝛿)𝑏1−1 ( 𝛽

𝛽 + 𝛾 + 𝛿 )
𝑎2−1

( 𝛾 + 𝛿
𝛽 + 𝛾 + 𝛿 )

𝑏2−1
( 𝛾
𝛾 + 𝛿 )

𝑎3−1

( 𝛿
𝛾 + 𝛿 )

𝑏3−1 1
(𝛽 + 𝛾 + 𝛿)(𝛾 + 𝛿)

= 1
∏3

𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)
𝛼𝑎1−1𝛽𝑎2−1𝛾 𝑎3−1𝛿𝑏3−1(𝛽 + 𝛾 + 𝛿)𝑏1−𝑎2−𝑏2(𝛾 + 𝛿)𝑏2−𝑎3−𝑏3 .

The pdf of 𝑆0, 𝑆1 is derived similarly. Let 𝜁 be the function that maps the values of
𝑆0, 𝑆1 to 𝛽, 𝛾 , 𝛿 (again, 𝛼 is implicitly computed as 1 − 𝛽 − 𝛾 − 𝛿). Since 𝜇 is not fully
determined by 𝑆0, 𝑆1, we must also include one of the variables in the input of 𝜁 to fully
determine its output. Including 𝛿 leads to the simplest expression for 𝜁 :

𝜁 (𝑆0, 𝑆1, 𝛿) = [
𝛽
𝛾
𝛿
] = [

𝑆0 − 𝛿
𝑆1 − 𝛿

𝛿
] .

The Jacobian matrix of 𝜁 is

𝜕𝛽
𝜕𝑆0

= 1 𝜕𝛽
𝜕𝑆1

= 0 𝜕𝛽
𝜕𝛿 = −1

𝜕𝛾
𝜕𝑆0

= 0 𝜕𝛾
𝜕𝑆1

= 1 𝜕𝛾
𝜕𝛿 = −1

𝜕𝛿
𝜕𝑆0

= 0 𝜕𝛿
𝜕𝑆1

= 0 𝜕𝛿
𝜕𝛿 = 1
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D. Properties of the bivariate beta distribution

which has a determinant of 1. Therefore, we can write

𝑓𝑆0,𝑆1,𝛿 (𝑆0, 𝑆1, 𝛿) = 𝑓𝛽,𝛾 ,𝛿 (𝜁 (𝑆0, 𝑆1, 𝛿))|det𝐽𝜁 (𝑆0, 𝑆1, 𝛿)|
= 𝑓𝜇(1 − 𝑆0 − 𝑆1 + 𝛿, 𝑆0 − 𝛿, 𝑆1 − 𝛿, 𝛿)
= 1

∏3
𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)

(1 − 𝑆0 − 𝑆1 + 𝛿)𝑎1−1(𝑆0 − 𝛿)𝑎2−1(𝑆1 − 𝛿)𝑎3−1𝛿𝑏3−1

(𝑆0 + 𝑆1 − 𝛿)𝑏1−𝑎2−𝑏2𝑆𝑏2−𝑎3−𝑏31 .
From this, the density of 𝑆0, 𝑆1 can be found by integrating over 𝛿 . Recall that the
Fréchet bounds put constraints on the values of 𝛿 given 𝑆0, 𝑆1:

max{0, 𝑆0 + 𝑆1 − 1} ≤ 𝛿 ≤ min{𝑆0, 𝑆1}. (from Eq. 6.18)

Therefore, the integration can be reduced to these bounds as follows.

𝑓𝑆0,𝑆1(𝑆0, 𝑆1) =
1

∏3
𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)

∫
min{𝑆0,𝑆1}

max{0,𝑆0+𝑆1−1}
(1−𝑆0−𝑆1+𝛿)𝑎1−1(𝑆0−𝛿)𝑎2−1(𝑆1−𝛿)𝑎3−1

𝛿𝑏3−1(𝑆0 + 𝑆1 − 𝛿)𝑏1−𝑎2−𝑏2𝑆𝑏2−𝑎3−𝑏31 d𝛿.

Result D.6. The raw moments of 𝑆0, 𝑆1 ∼ GBB(𝑎1, … , 𝑏3) for integers 𝑟 , 𝑠 > 0 are

𝑅𝑟 𝑠(𝑆0, 𝑆1) =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟+𝑠1
(𝑎1 + 𝑏1)𝑟+𝑠

𝑎𝑟−𝑝2 𝑏𝑠+𝑝2
(𝑎2 + 𝑏2)𝑟+𝑠

𝑎𝑠−𝑞3 𝑏𝑝+𝑞3
(𝑎3 + 𝑏3)𝑠+𝑝

. (D.38)

Proof. Using a similar reasoning as in the proof of Result D.2, we have

𝑅𝑟 𝑠(𝑆0, 𝑆1) = 𝔼[𝑆𝑟0𝑆𝑠1] = 𝔼[(𝛽 + 𝛿)𝑟 (𝛾 + 𝛿)𝑠]

= 𝔼 [(
𝑟

∑
𝑝=0

(𝑟𝑝)𝛽
𝑟−𝑝𝛿𝑝)(

𝑠
∑
𝑞=0

(𝑠𝑞)𝛾
𝑠−𝑞𝛿𝑞)]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)𝔼[𝛽

𝑟−𝑝𝛾 𝑠−𝑞𝛿𝑝+𝑞]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)𝔼[(𝑧2(1 − 𝑧1))𝑟−𝑝(𝑧3(1 − 𝑧1)(1 − 𝑧2))𝑠−𝑞

((1 − 𝑧1)(1 − 𝑧2)(1 − 𝑧3))𝑝+𝑞]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)𝔼[(1 − 𝑧1)𝑟+𝑠𝑧𝑟−𝑝2 (1 − 𝑧2)𝑠+𝑝𝑧𝑠−𝑞3 (1 − 𝑧3)𝑝+𝑞]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

𝑏𝑟+𝑠1
(𝑎1 + 𝑏1)𝑟+𝑠

𝑎𝑟−𝑝2 𝑏𝑠+𝑝2
(𝑎2 + 𝑏2)𝑟+𝑠

𝑎𝑠−𝑞3 𝑏𝑝+𝑞3
(𝑎3 + 𝑏3)𝑠+𝑝

.

In the last equality, we factorized the expect value using the independence of 𝑧1, 𝑧2, 𝑧3,
and we used the moments of the beta distribution for integer exponents (see Eq. (2.37)
in Section 2.1.5):

𝔼[𝑥 𝑟 (1 − 𝑥)𝑠] = 𝑎𝑟𝑏𝑠
(𝑎 + 𝑏)𝑟+𝑠

when 𝑥 ∼ Beta(𝑎, 𝑏).
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Result D.7. The partial derivative of the raw moments of (𝑆0, 𝑆1) ∼ GBB(𝑎1, … , 𝑏3) for
integers 𝑟 , 𝑠 > 0 with respect to the distribution parameters is

𝜕𝔼[𝑆𝑟0𝑆𝑠1]
𝜕𝑎𝑗

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

⎛
⎜⎜
⎝

𝜕
𝜕𝑎𝑗

𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

⎞
⎟⎟
⎠
∏
𝑘≠𝑗

𝑎𝑎
∗
𝑘𝑘 𝑏𝑏

∗
𝑘𝑘

(𝑎𝑘 + 𝑏𝑘)𝑎∗𝑘+𝑏∗𝑘
(D.39)

𝜕𝔼[𝑆𝑟0𝑆𝑠1]
𝜕𝑏𝑗

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

(𝑟𝑝)(
𝑠
𝑞)

⎛
⎜⎜
⎝

𝜕
𝜕𝑏𝑗

𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

⎞
⎟⎟
⎠
∏
𝑘≠𝑗

𝑎𝑎
∗
𝑘𝑘 𝑏𝑏

∗
𝑘𝑘

(𝑎𝑘 + 𝑏𝑘)𝑎∗𝑘+𝑏∗𝑘
(D.40)

where

𝑎∗1 = 0 𝑎∗2 = 𝑟 − 𝑝 𝑎∗3 = 𝑠 − 𝑞 (D.41)

𝑏∗1 = 𝑟 + 𝑠 𝑏∗2 = 𝑠 + 𝑝 𝑏∗3 = 𝑝 + 𝑞. (D.42)

and the inner partial derivatives evaluate to

𝜕
𝜕𝑎𝑗

𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

=
𝑎𝑎

∗𝑗
𝑗 𝑏𝑏

∗𝑗
𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

((𝑎𝑗)𝑎∗𝑗 − (𝑎𝑗 + 𝑏𝑗)𝑎∗𝑗 +𝑏∗𝑗 ) (D.43)

𝜕
𝜕𝑏𝑗

𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

=
𝑎𝑎

∗𝑗
𝑗 𝑏𝑏

∗𝑗
𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

((𝑏𝑗)𝑎∗𝑗 − (𝑎𝑗 + 𝑏𝑗)𝑎∗𝑗 +𝑏∗𝑗 ). (D.44)

Proof. Equations (D.39) and (D.40) are just an application of the linearity of the partial
derivative operator, starting from Eq. (D.38). Evaluating the inner partial derivative for
𝑎𝑗 gives

𝜕
𝜕𝑎𝑗

𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

=
𝑎𝑎

∗𝑗
𝑗 (𝑎𝑗)𝑎∗𝑗 𝑏

𝑏∗𝑗
𝑗 (𝑎𝑗 + 𝑏𝑗)𝑎

∗𝑗 +𝑏∗𝑗 − 𝑎𝑎
∗𝑗

𝑗 𝑏𝑏
∗𝑗

𝑗 (𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗 (𝑎𝑗 + 𝑏𝑗)𝑎∗𝑗 +𝑏∗𝑗

((𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗 )

2

=
𝑎𝑎

∗𝑗
𝑗 𝑏𝑏

∗𝑗
𝑗

(𝑎𝑗 + 𝑏𝑗)𝑎
∗𝑗 +𝑏∗𝑗

((𝑎𝑗)𝑎∗𝑗 − (𝑎𝑗 + 𝑏𝑗)𝑎∗𝑗 +𝑏∗𝑗 ).

The derivation is similar for 𝑏𝑗 .
Result D.8. Let 𝑓𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1) be the pdf of 𝑆0, 𝑆1 following a generalized bivariate
beta distribution with parameter vector [𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3].1 The expected value of the
counterfactuals 𝛼, 𝛽, 𝛾 , 𝛿 given 𝑆0 = 𝑆0, 𝑆1 = 𝑆1 can be expressed as

𝔼[𝛼 ∣ 𝑆0, 𝑆1] =
𝑓𝑆0,𝑆1(

𝑎1+1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)
𝑓𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)
𝔼[𝛽 ∣ 𝑆0, 𝑆1] =

𝑓𝑆0,𝑆1(
𝑎1,𝑎2+1,𝑎3𝑏1+1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)

𝑓𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)

(D.45)

𝔼[𝛾 ∣ 𝑆0, 𝑆1] =
𝑓𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3+1𝑏1+1,𝑏2+1,𝑏3 ; 𝑆0, 𝑆1)
𝑓𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)
𝔼[𝛿 ∣ 𝑆0, 𝑆1] =

𝑓𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1+1,𝑏2+1,𝑏3+1; 𝑆0, 𝑆1)

𝑓𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)

.

(D.46)
1This notation is inspired by that of the generalized hypergeometric function.
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Proof. We will show the proof for 𝛽 . The three other counterfactuals follow a similar
pattern. Let 𝑓𝛽,𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝛽, 𝑆0, 𝑆1) be the joint pdf of 𝛽, 𝑆0, 𝑆1 with parameter vector
[𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3]. By the definition of the conditional expectation (Definition 2.2), we
have

𝔼[𝛽 ∣ 𝑆0, 𝑆1] =
∫
1

0
𝛽𝑓𝛽,𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝛽, 𝑆0, 𝑆1) d𝛽

𝑓𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)

. (D.47)

We can marginalize 𝑓𝛽,𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝛽, 𝑆0, 𝑆1) by integrating over the others components

of 𝜇 (that is, 𝛼 , 𝛾 and 𝛿) as follows:

∫
1

0
𝛽𝑓𝛽,𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝛽, 𝑆0, 𝑆1) d𝛽 = ∫Λ 𝛽𝑓𝜇,𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝜇, 𝑆0, 𝑆1) d𝜇. (D.48)

On the right-hand side, the integration domain is the 4-dimensional unit simplex Λ =
{𝜇 ∣ 𝜇𝑗 ≥ 0 and ∑𝑗 𝜇𝑗 = 1}. Since 𝑆0 and 𝑆1 are defined as 𝑆0 = 𝛽 + 𝛿 and 𝑆1 = 𝛾 + 𝛿 ,
the pdf 𝑓𝜇,𝑆0,𝑆1 is equal to 𝑓𝜇 whenever these two equalities are respected, and is zero
everywhere else. The set of values of 𝜇 that satisfies these two equalities is noted
Λ(𝑆0, 𝑆1) (see Eq. 6.76). Using this, the numerator of Eq. (D.47) can be developed as

∫Λ 𝛽𝑓𝜇,𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝜇, 𝑆0, 𝑆1) d𝜇 = ∫Λ(𝑆0,𝑆1)

𝛽𝑓𝜇(𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝜇) d𝜇. (D.49)

This looks similar to the pdf of 𝑆0, 𝑆1 in Eq. (D.33) of Result D.5. In fact, we can adjust
the distribution parameters so that the expression above exactly matches the pdf of
𝑆0, 𝑆1 with the adjusted parameters. If we increase 𝑎2 and 𝑏1 by one, we obtain

𝑓𝑆0,𝑆1(
𝑎1,𝑎2+1,𝑎3𝑏1+1,𝑏2,𝑏3 ; 𝑆0, 𝑆1) = ∫Λ(𝑆0,𝑆1)

𝑓𝜇(𝑎1,𝑎2+1,𝑎3𝑏1+1,𝑏2,𝑏3 ; 𝜇) d𝜇

= 1
∏3

𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)
∫Λ(𝑆0,𝑆1)

𝛼𝑎1−1𝛽𝑎2𝛾 𝑎3−1𝛿𝑏3−1(𝛽 + 𝛾 + 𝛿)𝑏1+1−𝑎2−1−𝑏2

(𝛾 + 𝛿)𝑏2−𝑎3−𝑏3 d𝜇
= 1

∏3
𝑗=1 Β(𝑎𝑗 , 𝑏𝑗)

∫Λ(𝑆0,𝑆1)
𝛽𝛼𝑎1−1𝛽𝑎2−1𝛾 𝑎3−1𝛿𝑏3−1(𝛽 + 𝛾 + 𝛿)𝑏1−𝑎2−𝑏2(𝛾 + 𝛿)𝑏2−𝑎3−𝑏3 d𝜇

= ∫Λ(𝑆0,𝑆1)
𝛽𝑓𝜇(𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝜇) d𝜇. (D.50)

Chaining Eq. (D.47), Eq. (D.48), Eq. (D.49), and Eq. (D.50), we obtain

𝔼[𝛽 ∣ 𝑆0, 𝑆1] =
∫Λ(𝑆0,𝑆1)

𝛽𝑓𝜇,𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝜇, 𝑆0, 𝑆1) d𝜇

𝑓𝑆0,𝑆1(
𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)

=
𝑓𝑆0,𝑆1(

𝑎1,𝑎2+1,𝑎3𝑏1+1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)
𝑓𝑆0,𝑆1(

𝑎1,𝑎2,𝑎3𝑏1,𝑏2,𝑏3 ; 𝑆0, 𝑆1)
.
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D.3 Noisy bivariate beta distribution

The noisy bivariate beta distribution, used in Section 6.4.5, is sampled as follows:

𝜇 ∼ Dir(𝑚) (D.51)

𝑆0 = 𝛽 + 𝛿 (D.52)

𝑆1 = 𝛾 + 𝛿 (D.53)

𝑆̂ 𝑡 ∼ Beta(𝜆𝑡𝑆 𝑡 , 𝜆𝑡(1 − 𝑆 𝑡)) for 𝑡 = 0, 1. (D.54)

We note (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1). As for the generalized bivariate beta distribution,
let us derive the properties of this new distribution that are needed in Section 6.4.5: its
probability density function, its moments, the partial derivatives of its moments, and
the expected value of the counterfactuals.

Result D.9. Let 𝑓𝑥 (𝑎𝑏 ; 𝑥) be the pdf of a random variable 𝑥 following a beta distribution
Β(𝑎, 𝑏), given in Eq. (2.32). The probability density function of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1)
is

𝑓 ( ̂𝑆0, ̂𝑆1) = ∫
1

0 ∫
1

0
𝑓𝑆0,𝑆1(𝑆0, 𝑆1)𝑓𝑆̂0∣𝑆0(

𝜆0𝑆0
𝜆0(1−𝑆0); ̂𝑆0)𝑓𝑆̂1∣𝑆1(

𝜆1𝑆1
𝜆1(1−𝑆1); ̂𝑆1) d𝑆0 d𝑆1 (D.55)

where 𝑓𝑆0,𝑆1 is the pdf of the bivariate beta distribution given in Eq. (D.4).

Proof. Since 𝑆̂0, 𝑆̂1 are both sampled following beta distributions with parameters de-
pending on 𝑆0, 𝑆1, their joint probability density function can be found bymarginalizing
over 𝑆0, 𝑆1:

𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) = ∫
1

0 ∫
1

0
𝑓𝑆0,𝑆1(𝑆0, 𝑆1)𝑓𝑆̂0,𝑆̂1∣𝑆0,𝑆1( ̂𝑆0, ̂𝑆1) d𝑆1 d𝑆0

= ∫
1

0 ∫
1

0
𝑓𝑆0,𝑆1(𝑆0, 𝑆1)𝑓𝑆̂0∣𝑆0(

𝜆0𝑆0
𝜆0(1−𝑆0); ̂𝑆0)𝑓𝑆̂1∣𝑆1(

𝜆1𝑆1
𝜆1(1−𝑆1); ̂𝑆1) d𝑆0 d𝑆1.

Result D.10. The raw moments of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1) for integers 𝑟 , 𝑠 > 0 are

𝑅𝑟 𝑠(𝑆̂0, 𝑆̂1) =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝑅𝑝𝑞(𝑆0, 𝑆1) (D.56)

where 𝑅𝑝𝑞(𝑆0, 𝑆1) is the raw moment of the bivariate beta distribution given in Result D.2,
and [𝑎𝑏] is the unsigned Stirling number of the first kind (Weisstein, 2023), defined by
recurrence for integers 𝑎, 𝑏 ≥ 0 as

[𝑎 + 1
𝑏 ] = 𝑎[𝑎𝑏] + [ 𝑎

𝑏 − 1] with [00] = 1 and [𝑎0] = [0𝑏] = 0. (D.57)

Proof. By the “tower” property of the expectation operator (Wolpert, 2010), and the raw
moments of the beta distribution (Eq. 2.37), we can write

𝑅𝑟 𝑠(𝑆̂0, 𝑆̂1) = 𝔼 [𝑆̂𝑟0𝑆̂
𝑠
1] = 𝔼𝑆0,𝑆1[𝔼[𝑆̂

𝑟
0𝑆̂

𝑠
1 ∣ 𝑆0, 𝑆1]] = 𝔼 [(𝑆0𝜆0)

𝑟

𝜆𝑟0
(𝑆1𝜆1)𝑠

𝜆𝑠1
] .
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The unsigned Stirling numbers of the first kind are equal the coefficients of polynomial
expansion of the the rising factorial (Qi, 2013):

𝑥𝑛 =
𝑛
∑
𝑘=0

[𝑛𝑘]𝑥
𝑘 .

This leads to

𝔼[(𝑆0𝜆0)
𝑟

𝜆𝑟0
(𝑆1𝜆1)𝑠

𝜆𝑠1
] = 𝔼 [(

𝑟
∑
𝑝=0

[𝑟𝑝]
𝜆𝑝0
𝜆𝑟0

𝑆𝑝0 )(
𝑠

∑
𝑞=0

[𝑠𝑞]
𝜆𝑞1
𝜆𝑠1

𝑆𝑞1)]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝔼[𝑆𝑝0 𝑆𝑞1]

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝑅𝑝𝑞(𝑆0, 𝑆1).

Result D.11. The partial derivative of the raw moments of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1) for
integers 𝑟 , 𝑠 > 0 with respect to 𝑚 is

𝜕𝑅𝑟 𝑠(𝑆̂0, 𝑆̂1)
𝜕𝑚𝑖

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝜕𝑅𝑝𝑞(𝑆0, 𝑆1)
𝜕𝑚𝑖

(D.58)

where the partial derivative of 𝑅𝑝𝑞(𝑆0, 𝑆1) is given in Result D.3.

Proof. This is a simple application of the linearity of the partial derivative operator on
Eq. (D.56).

Result D.12. The expected value of the counterfactuals 𝛼, 𝛽, 𝛾 , 𝛿 given 𝑆̂0 = ̂𝑆0, 𝑆̂1 = ̂𝑆1
can be expressed as

𝔼[𝜇𝑗 ∣ ̂𝑆0, ̂𝑆1] = 1
𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) ∫Λ

𝜇𝑗𝑓𝜇(𝜇)𝑓𝑆̂0 (
𝜆0(𝛽+𝛿)
𝜆0(𝛼+𝛾); ̂𝑆0) 𝑓𝑆̂1 (

𝜆1(𝛾+𝛿)
𝜆1(𝛼+𝛽); ̂𝑆1) d𝜇. (D.59)

Proof. The proof is similar to that of Result D.8. First, we develop

𝔼[𝜇𝑗 ∣ ̂𝑆0, ̂𝑆1] =
∫
1

0
𝜇𝑗𝑓𝜇𝑗 ,𝑆̂0,𝑆̂1(𝜇𝑗 ̂𝑆0, ̂𝑆1) d𝜇𝑗

𝑓 ( ̂𝑆0, ̂𝑆1)
.

We can marginalize 𝑓𝜇𝑗 ,𝑆̂0,𝑆̂1(𝜇𝑗 ̂𝑆0, ̂𝑆1) by integrating over the others terms in 𝜇, leading
to

𝔼[𝜇𝑗 ∣ ̂𝑆0, ̂𝑆1] = 1
𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) ∫Λ

𝜇𝑗𝑓𝜇,𝑆̂0,𝑆̂1(𝜇, ̂𝑆0, ̂𝑆1) d𝜇

= 1
𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) ∫Λ

𝜇𝑗𝑓𝑆̂0,𝑆̂1∣𝜇( ̂𝑆0, ̂𝑆1)𝑓𝜇(𝜇) d𝜇

= 1
𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) ∫Λ

𝜇𝑗𝑓𝜇(𝜇)𝑓𝑆̂0 (
𝜆0(𝛽+𝛿)
𝜆0(𝛼+𝛾); ̂𝑆0) 𝑓𝑆̂1 (

𝜆1(𝛾+𝛿)
𝜆1(𝛼+𝛽); ̂𝑆1) d𝜇.
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D.4 Noisy generalized bivariate beta distribution

The noisy generalized bivariate beta distribution, used in Section 6.4.6, is sampled as
follows:

𝜇 ∼ GD(𝑎1, … , 𝑏3) (D.60)

𝑆0 = 𝛽 + 𝛿 (D.61)

𝑆1 = 𝛾 + 𝛿 (D.62)

𝑆̂ 𝑡 ∼ Beta(𝜆𝑡𝑆 𝑡 , 𝜆𝑡(1 − 𝑆 𝑡)) for 𝑡 = 0, 1. (D.63)

We note (𝑆̂0, 𝑆̂1) ∼ NGBB(𝑎1, … , 𝑏3, 𝜆0, 𝜆1). None of the properties of the NBB distri-
bution derived in Appendix D.3 depend on the exact distribution of 𝜇. Therefore, Re-
sults D.9 to D.12 are easily adapted to the NGBB distribution by changing the references
in the statement of the results. We state these properties for the sake of completeness,
but we do not give the proofs, since they are identical to those in Appendix D.3.

Result D.13. Let 𝑓𝑥 (𝑎𝑏 ; 𝑥) be the pdf of a random variable 𝑥 following a beta distribution
Β(𝑎, 𝑏), given in Eq. (2.32). The probability density function of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1)
is

𝑓 ( ̂𝑆0, ̂𝑆1) = ∫
1

0 ∫
1

0
𝑓𝑆0,𝑆1(𝑆0, 𝑆1)𝑓𝑆̂0∣𝑆0(

𝜆0𝑆0
𝜆0(1−𝑆0); ̂𝑆0)𝑓𝑆̂1∣𝑆1(

𝜆1𝑆1
𝜆1(1−𝑆1); ̂𝑆1) d𝑆0 d𝑆1 (D.64)

where 𝑓𝑆0,𝑆1 is the pdf of the generalized bivariate beta distribution given in Eq. (D.33).

Proof. See Result D.9.

Result D.14. The raw moments of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1) for integers 𝑟 , 𝑠 > 0 are

𝑅𝑟 𝑠(𝑆̂0, 𝑆̂1) =
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝑅𝑝𝑞(𝑆0, 𝑆1) (D.65)

where 𝑅𝑝𝑞(𝑆0, 𝑆1) is the raw moment of the generalized bivariate beta distribution given
in Result D.6, and [𝑎𝑏] is the unsigned Stirling number of the first kind (see Result D.10).

Proof. See Result D.10.

Result D.15. The partial derivative of the raw moments of (𝑆̂0, 𝑆̂1) ∼ NBB(𝑚, 𝜆0, 𝜆1) for
integers 𝑟 , 𝑠 > 0 with respect to 𝑚 is

𝜕𝑅𝑟 𝑠(𝑆̂0, 𝑆̂1)
𝜕𝑚𝑖

=
𝑟

∑
𝑝=0

𝑠
∑
𝑞=0

[𝑟𝑝][
𝑠
𝑞]

𝜆𝑝0 𝜆𝑞1
𝜆𝑟0𝜆𝑠1

𝜕𝑅𝑝𝑞(𝑆0, 𝑆1)
𝜕𝑚𝑖

(D.66)

where the partial derivative of 𝑅𝑝𝑞(𝑆0, 𝑆1) is given in Result D.7.

Proof. See Result D.11

Result D.16. The expected value of the counterfactuals 𝛼, 𝛽, 𝛾 , 𝛿 given 𝑆̂0 = ̂𝑆0, 𝑆̂1 = ̂𝑆1
can be expressed as

𝔼[𝜇𝑗 ∣ ̂𝑆0, ̂𝑆1] = 1
𝑓𝑆̂0,𝑆̂1( ̂𝑆0, ̂𝑆1) ∫Λ

𝜇𝑗𝑓𝜇(𝜇)𝑓𝑆̂0 (
𝜆0(𝛽+𝛿)
𝜆0(𝛼+𝛾); ̂𝑆0) 𝑓𝑆̂1 (

𝜆1(𝛾+𝛿)
𝜆1(𝛼+𝛽); ̂𝑆1) d𝜇. (D.67)

Proof. See Result D.12.
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