Publications
Causal and predictive modeling of customer churn: lessons learned from empirical and theoretical research
Théo Verhelst, supervised by Gianluca Bontempi
PhD thesis,
Université Libre de Bruxelles,
2024
PDF –
BibTeX
@thesis{verhelst2024causal,
type = {phdthesis},
title = {Causal and Predictive Modeling of Customer Churn: Lessons Learned from Empirical and Theoretical Research},
shorttitle = {Causal and Predictive Modeling of Customer Churn},
author = {Verhelst, Théo},
date = {2024-01},
institution = {{Université libre de Bruxelles}},
location = {{Bruxelles}},
pagetotal = {225}
}
Uplift vs. predictive modeling: a theoretical analysis
Théo Verhelst, Robin Petit, Wouter Verbeke, Gianluca Bontempi
@misc{verhelst2023uplift,
title={Uplift vs. predictive modeling: a theoretical analysis},
author={Verhelst, Théo and Petit, Robin and Verbeke, Wouter and Bontempi, Gianluca},
year={2023},
eprint={2309.12036},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
A churn prediction dataset from the telecom sector: a new benchmark for uplift modeling
Théo Verhelst, Denis Mercier, Jeevan Shrestha, Gianluca Bontempi
Conference paper,
ECML PKDD 2023 Workshops - Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making,
2023
Workshop page –
arXiv –
BibTeX
@misc{verhelst2023churn,
title={A churn prediction dataset from the telecom sector: a new benchmark for uplift modeling},
author={Verhelst, Théo and Mercier, Denis and Shrestha, Jeevan and Bontempi, Gianluca},
year={2023},
eprint={2312.07206},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Partial counterfactual identification and uplift modeling: theoretical results and real-world assessment
Théo Verhelst, Denis Mercier, Jeevan Shrestha, Gianluca Bontempi
Journal paper,
Machine Learning,
2023
Full paper –
Read-only full text –
arXiv –
BibTeX
@article{verhelst2023partial,
title={Partial counterfactual identification and uplift modeling: theoretical results and real-world assessment},
author={Verhelst, Th{\'e}o and Mercier, Denis and Shrestha, Jeevan and Bontempi, Gianluca},
journal={Machine Learning},
pages={1--25},
year={2023},
publisher={Springer}
}
Predicting reach to find persuadable customers: improving uplift models for churn prevention
Théo Verhelst, Denis Mercier, Jeevan Shrestha, Jean-Christophe Dewitte, Gianluca Bontempi
Conference paper,
24th International Conference on Discovery Science,
2021
Full paper –
BibTeX
@InProceedings{verhelst2021predicting
author={Verhelst, Th{\'e}o and Shrestha, Jeevan and Mercier, Denis and Dewitte, Jean-Christophe and Bontempi, Gianluca},
editor={Soares, Carlos and Torgo, Luis},
title="Predicting Reach to Find Persuadable Customers: Improving Uplift Models for Churn Prevention",
booktitle="Discovery Science",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="44--54",
isbn="978-3-030-88942-5"
}
Transfer learning strategies for credit card fraud detection
Bertrand Lebichot, Théo Verhelst, Yann-Aël Le Borgne, Liyun He-Guelton, Frédéric Oblé, Gianluca Bontempi
Journal paper,
IEEE Access,
2021
Full paper –
BibTeX
@article{lebichot2021transfer,
author={Lebichot, Bertrand and Verhelst, Théo and Le Borgne, Yann-Aël and He-Guelton, Liyun and Oblé, Frédéric and Bontempi, Gianluca},
journal={IEEE Access},
title={Transfer Learning Strategies for Credit Card Fraud Detection},
year={2021},
volume={9},
number={},
pages={114754-114766},
doi={10.1109/ACCESS.2021.3104472}
}
Understanding telecom customer churn with machine learning: from prediction to causal inference
Théo Verhelst, Olivier Caelen, Jean-Christophe Dewitte, Bertrand Lebichot, Gianluca Bontempi
Conference paper,
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on Machine Learning,
2019
Full paper –
BibTeX
@InProceedings{verhelst2021understanding,
author={Verhelst, Th{\'e}o and Caelen, Olivier and Dewitte, Jean-Christophe and Lebichot, Bertrand and Bontempi, Gianluca},
editor={Bogaerts, Bart and Bontempi, Gianluca and Geurts, Pierre and Harley, Nick and Lebichot, Bertrand and Lenaerts, Tom and Louppe, Gilles},
title="Understanding Telecom Customer Churn with Machine Learning: From Prediction to Causal Inference",
booktitle="Artificial Intelligence and Machine Learning",
year="2020",
publisher="Springer International Publishing",
address="Cham",
pages="182--200",
isbn="978-3-030-65154-1"
}
Churn Prediction and Causal Analysis on Telecom Customer Data
Théo Verhelst, supervised by Gianluca Bontempi
Master thesis,
Université Libre de Bruxelles,
2018
PDF –
BibTeX
@thesis{verhelst2018churn,
type = {mathesis},
title = {Churn Prediction and Causal Analysis on Telecom Customer Data},
author = {Verhelst, Théo},
date = {2018},
institution = {{Université libre de Bruxelles}},
location = {{Brussels, Belgium}},
url = {http://127.0.0.1:4000/assets/documents/theo_verhelst_master_thesis.pdf},
urldate = {2024-04-09},
pagetotal = {83}
}